Читать книгу Элементы - Сен Гук Ким - Страница 8

Часть I
5. Специальное распределение натуральных чисел

Оглавление

1. Квадрат натуральных чётных чисел (2n)2 при n = 1; 2; 3; 4:


(2n)2 = 4; 16; 36; 64 (1)


2. Квадрат любого числа n равен сумме последовательных нечётных чисел:


n2 = Σ(2n –1) (2)


Это подтверждается последовательной подстановкой каждого из n = 1; 2; 3; 4:


Σ(2n –1) = 1; 1 + 3; 1 + 3 + 5; 1 + 3 + 5; 1 + 3 + 5 + 7


Тогда: (2n)2 = 2[2(1); 2(1 + 3); 2(1 + 3 + 5); 2(1 + 3 + 5 + 7)], (3)


и


(2n)2 = 2(2n2) = 2(2; 8; 18; 32) (4)


Получились числовые сдвоенности – Диады из числовых Монад: 2; 8; 18; 32.

Просуммируем все Диады (4) с учётом (2), (3) и правила: «от перестановки мест слагаемых сумма не изменяется».


Σ2(2n2) = 2Σ2Σ(2n –1) = 2{2[(1) + (1 + 3) + (1 + 3 + 5) + (1 + 3 + 5 + 7)]} = 2(2) + 2(2 + 6) + 2(2 + 6 + 10) + 2(2 + 6 + 10 + 14) = 2(2) + 2(6 + 2) + 2(10 + 6 + 2) + 2(14 + 10 + 6 + 2)


Полученный результат представляет полное количество KD чисел в четырёх Диадах из пар (2 перед скобками) Монад, которые состоят последовательно из 1, 2, 3, 4 слагаемых (в скобках). В сумме они составляют:


KD = 2(2) + 2(6 + 2) + 2(10 + 6 + 2) + 2(14 + 10 + 6 + 2) = 120 (5)


С учётом (3) формулу (4) можно записать как последовательность количества KN номеров N в Монадах последовательности n = 1; 2; 3; 4 Диад:


KN = 2(2n2) = 2Σ2(2n –1) = 2[2(1), 2(3 + 1), 2(5 + 3 + 1), 2(7 + 5 + 3 + 1)] (6)


Произведя суммирование и раскрытие скобок в правой части формулы (6), получим распределение количества KN номеров N в n = 1; 2; 3; 4 Диадах:


Это именно количества номеров, которые не обязательно должны следовать по определённому нарастающему порядку в монадах. Номера же должны последовательно нарастать. Номера N, в отличие от KN по формуле (6), должны выстраиваться в последовательных монадах 1–4 Диад по этой же простой формуле:


N = 2Σ2(2n –1), (7)


но в последовательно нарастающем порядке от 1 до 120.

Все значения KN чётные. Поэтому можно построить геометрическое воплощение формул (5) и (6) в виде вертикально-симметричной последовательности 20-ти рядов ячеек-квадратиков 8-ми Монад для 1-120 номеров N в n = 1; 2; 3; 4 Диадах-Уровнях сверху вниз:


Рис. 10. Вертикально-симметричное 4-Уровневое распределение ячеек-квадратиков для 1-120 номеров в 20-ти рядах 8-ми Монад по формуле (6)


Ряды 1, 2,4, 6, 9,12,16, 20 состоят из 2 ячеек, ряды 3, 5, 8, 11, 15, 19 – из 6 ячеек, ряды 7,10, 14, 18 – из 10 ячеек, ряды 13, 17 – из 14 ячеек. В целом форма с ячейками напоминает ветвистую Ёлку. Ряды с двумя ячейками выглядят стволом Ёлки. Очевидно, ствол отличается от ветвей. И первые ветви Уровней n = 2; 3; 4 отличаются друг от друга. Таким образом, Ёлка составлена из ствола и трёх разных ветвей. Эти очевидные различия отразим тонами серой шкалы (gray scale).


Рис. 11. Ячейки Ёлки в различных тонах серой шкалы


Первый ряд первой диады из двух ячеек задаёт однообразие стволовых ячеек первого типа в остальных нижележащих подобных семи рядах. Третий ряд (первый ряд во второй Диаде) задаёт шестиячеечный первый тип ветви Ёлки в нижележащих подобных пяти рядах. Седьмой ряд (первый ряд в третьей Диаде) задаёт десятиячеечный второй тип ветви Ёлки в нижележащих трёх подобных рядах. Тринадцатый ряд (первый ряд в четвёртой Диаде) задаёт четырнадцатиячеечный третий тип ветви Ёлки в нижележащем одном ряду. Таким образом, первые ряды с 2, 6,10,14 ячейками являются типозадающими для нижележащих подобных рядов, и все 120 ячеек закономерно подразделяются на 4 типа.

Пронумеруем ячейки последовательно в строго нарастающем порядке слева направо в рядах с последовательным переходом на нижележащие ряды сверху вниз. При этом номера n = 1, 2, 3, 4 Диад-Уровней и рядов 1-20, зафиксированные на рис. 10 и номера Диад-Уровней на рис. 11, опустим.


Рис. 12. Последовательная нумерация ячеек на рис. 11


В соответствии с разделением ячеек на четыре типа и последовательные номера 1-120 распределяется по этим четырём типам.

Элементы

Подняться наверх