Читать книгу Опционы: Разработка, оптимизация и тестирование торговых стратегий - Сергей Израйлевич - Страница 9
Глава 1. Разработка торговых стратегий
1.4. Маркет-нейтральные стратегии
1.4.3. Построение точек и границ дельта-нейтральности
ОглавлениеВ двух предыдущих разделах были описаны основные компоненты дельта-нейтральных стратегий. Нетрудно заметить, что даже наиболее простой базовый вариант стратегии содержит довольно большое количество параметров, для которых необходимо установить и зафиксировать определенные значения. Наличие даже нескольких параметров означает, что существует большое количество различных вариантов комбинирования их значений (увеличение идет по степенному закону). Следует отметить, что для большинства сочетаний значений параметров дельта-нейтральность недостижима.
Для базового варианта дельта-нейтральной стратегии можно выделить три основных параметра, которые непосредственно влияют на состав и структуру портфеля. К ним относятся:
• пороговое значение критерия, используемое для генериро- вания сигналов на открытие позиций;
• диапазон страйков, разрешенных для использования при построении комбинаций;
• разрешенные временные серии опционов (определяющие период времени, остающийся до даты экспирации).
Фиксируя значения этих параметров, разработчик торговой стратегии должен принимать во внимание их влияние на такие важные характеристики портфеля, как соотношение длинных и коротких позиций, соотношение различных типов опционных комбинаций, диверсификацию портфеля и характеристики риска. Однако в первую очередь необходимо определить зависимость индексной дельты портфеля от величины каждого из трех параметров (и от их различных сочетаний). Ведь если для большинства допустимых значений параметров индексная дельта портфеля существенно отклоняется от нуля, то построение дельта-нейтральной стратегии в принципе недостижимо.
Каждую комбинацию значений параметров, для которой соблюдается условие дельта-нейтральности (дельта портфеля равна нулю), мы будем называть точкой дельта нейтральности. А всю совокупность таких точек будем называть границей дельта нейтральности.
Для начала рассмотрим на нескольких примерах процедуру нахождения точек дельта-нейтральности. Предположим, что с целью получения торговых сигналов мы оцениваем исходное множество комбинаций, построенных для всех акций индекса S&P500. Оценка производится по критерию «математическое ожидание прибыли на основе логнормального распределения» (в соответствии с процедурой, описанной выше, для базовой стратегии). Допустим, что параметр «диапазон страйков» зафиксирован на значении 10 % от цены базового актива. Для параметра «время до экспирации» исследуем несколько значений: одна неделя, один, два и три месяца до экспирации. Для определения точек дельта-нейтральности 11 января 2010 г. были сгенерированы торговые сигналы для следующих дат экспирации: 15 января 2010 г. (одна неделя до экспирации), 19 февраля 2010 г. (один месяц до экспирации), 19 марта 2010 г. (два месяца до экспирации), 16 апреля 2010 г. (три месяца до экспирации).
Определим точки дельта-нейтральности для всего диапазона значений параметра «порог критерия». Для этого необходимо рассмотреть зависимость индексной дельты портфеля от величины порога. На рис. 1.4.1 представлены такие зависимости для четырех дат экспирации (в этом примере использовались страйки, лежащие в диапазоне 10 % от цен базовых активов). Дельта-нейтральными являются точки, лежащие на пересечении линии графика с горизонтальной осью. Соответственно, каждая точка пересечения горизонтальной оси указывает на величину порога, для которой соблюдается условие дельта-нейтральности. (Порог критерия равен координате на горизонтальной оси.)
Для четырех частных случаев, представленных на рис. 1.4.1, дельта-нейтральность достигается при величине порога от 2 % до 10 % (значения критерия и порога выражаются как математическое ожидание прибыли в процентах от объема инвестиций). Так, для случая, когда до экспирации остается одна неделя, существует всего одна точка дельта-нейтральности, приходящаяся на порог 9 %. Это означает, что если для данной временной серии построить комбинации, используя опционы, страйки которых лежат в диапазоне (цена базового актива ±10 %), и отобрать те из них, для которых значение критерия > 9 %, то мы получим дельта-нейтральный портфель.
В том случае, когда до экспирации остается месяц, существует множество точек дельта-нейтральности (поскольку линия дельты пересекает график в нескольких местах). Пересечения происходят в достаточно узком диапазоне значений порога, создавая своего рода отрезок дельта-нейтральности. На рис. 1.4.2 показан этот отрезок в более крупном масштабе, что позволяет рассмотреть каждую точку дельта-нейтральности по отдельности. Всего таких точек насчитывается 16, и они располагаются в интервале от 5 до 8 %. (Другими словами, значения порога критерия, для которых соблюдается условие дельта-нейтральности, находятся в интервале 5–8 %.) В том случае, когда значение параметра «время до экспирации» было принято равным двум месяцам, были обнаружены три точки дельта-нейтральности, а для трех месяцев – пять точек.
Заслуживает внимания тот факт, что для одной недели до экспирации линия индексной дельты является относительно гладкой и имеет форму классической логической кривой (верхний левый график на рис. 1.4.1). Для двух месяцев эта линия становится более ломанной, однако все еще сохраняет более-менее правильную форму (верхний правый график на рис. 1.4.1). В тех же случаях, когда портфель формировался из более далеких опционных серий (два и три месяца), линия дельты принимает все более хаотичный вид (нижние графики на рис. 1.4.1). Это означает, что дельта комбинаций, состоящих из опционов с близкой датой экспирации, приблизительно одинакова, если эти комбинации имеют приблизительно равные значения критерия. Если же комбинации строятся из дальних опционов, то их дельты гораздо более изменчивы даже в том случае, когда они оцениваются критерием приблизительно одинаково. Из этого следует, что выбор определенного сочетания значений параметров для построения дельта-нейтральных портфелей будет тем более надежен и устойчив, чем более близкие даты экспирации будут использоваться при создании опционных комбинаций.
Также следует отметить, что по мере роста значений параметра «порог критерия» индексная дельта портфеля, состоящего из опционов с близкой датой экспирации, изменяется в очень широком диапазоне. При этом дельта портфеля, сформированного из дальних опционных серий, находится в гораздо более узком диапазоне (сравни верхний левый и нижний правый графики на рис. 1.4.1). Это объясняется тем, что при прочих равных условиях дельта опционов растет по мере приближения даты экспирации (если опцион находится в деньгах и до истечения остается немного времени, то его дельта приближается к +1 или –1). Для нас из этого следует важный вывод о том, что если при создании портфеля мы несколько отступили от заданной комбинации значений параметров (при которой портфель является дельта-нейтральным), то отклонение от дельта-нейтральности будет гораздо большим при использовании опционов с близкой датой экспирации.
Теперь перейдем к процедуре нахождения границ дельта-нейтральности. Для трех параметров, определенных нами как наиболее существенных, зафиксируем сначала «время до экспирации» и исследуем все возможные сочетания значений двух других параметров – «порог критерия» и «диапазон страйков». Для этого необходимо рассчитать величину индексной дельты для каждого варианта (порог критерия × диапазон страйков) во всем диапазоне их допустимых значений. Затем полученные данные следует представить в виде топографической карты, где горизонтальная и вертикальная оси соответствуют значениям исследуемых параметров, а каждая точка на карте выражает высотную отметку, соответствующую величине дельты. Точки с одинаковыми высотными отметками на такой карте соединяются изолиниями. Изолиния, проходящая по нулевой отметке, является искомой границей дельта-нейтральности.
На рис. 1.4.3 представлен пример топографической карты для значения параметра «время до экспирации», равного одной неделе (были использованы те же данные, что и при построении верхнего левого графика на рис. 1.4.1; дата создания портфеля – 11 января 2010 г., дата экспирации – 15 января 2010 г.). Граница дельта-нейтральности проходит по диагонали от верхнего левого угла карты к правому нижнему углу. Справа от границы находятся портфели с положительными значениями индексной дельты, а с левой стороны – портфели с отрицательной дельтой. При очень низких значениях порога критерия (левый край карты) дельта портфелей достигает очень больших отрицательных значений.
Заметьте, что верхний левый график на рис. 1.4.1 в точности соответствует горизонтальной линии на карте, проходящей через диапазон страйков, равный 10 % (рис. 1.4.3). То есть если провести мысленный разрез по данной горизонтали и представить себе боковой вид данного разреза, то мы получим профиль, полностью совпадающий с линией индексной дельты на рис. 1.4.1. Таким образом, совокупность точек дельта-нейтральности, полученных по описанной выше методике, формирует границы дельта-нейтральности.
Глядя на топографическую карту, представленную на рис. 1.4.3, легко определить, что дельта-нейтральный портфель может быть сформирован при достаточно большом количестве сочетаний параметров (порог критерия × диапазон страйков). Например, можно построить портфель, состоящий из комбинаций, для которых значение критерия больше 5 %, а диапазон страйков достаточно широк (цена ± 20 %). С другой стороны, можно предпочесть дельта-нейтральный портфель, включающий комбинации только с большими значениями критерия (например, больше 15 %). Но тогда придется ограничиться довольно узким диапазоном страйков (цена ± 6 %). И так далее.
Описанная методика нахождения границ дельта-нейтральности представлена здесь в виде визуальных процедур. Это сделано исключительно для наглядности и простоты изложения материала. На практике визуализация границ не требуется, они могут быть определены расчетными методом, используя компьютерные алгоритмы. Вместе с тем построение подобных топографических карт может быть полезно для осмысления взаимозависимости параметров и выбора диапазонов их допустимых значений.
Необходимо отметить, что для целей создания автоматизированной торговой системы мы не можем ограничиться использованием карты подобной той, что изображена на рис. 1.4.3, поскольку она представляет собой единичный случай. А автоматизированная системная торговля характеризуется именно тем, что решения принимаются не по результатам изучения единственной карты, а на основе устойчивых закономерностей, установленных на достаточно широком фактическом материале. Кроме того, следует рассмотреть, зависит ли расположение границ дельта-нейтральности от состояния рынка. Логично предположить, что в периоды высокой волатильности границы выглядят иначе, чем во время спокойного рынка. Именно поэтому мы переходим теперь к изучению границ дельта-нейтральности, построенных на более широкой статистической базе, включающей как спокойные, так и экстремальные (кризисные) периоды.