Читать книгу Микроострия. Свойства, изготовление, применение - Сергей Зайцев - Страница 4
Свойства микроострий
ОглавлениеКонцентрирование электрических полей
Микроострия из электропроводных материалов обладают способностью концентрировать электрические поля. Подавая на них высокий электрический потенциал, удается получить напряженность электрического поля Е до 1011 В/м (хотя и только в микрообъемах вблизи от вершины микроострия). При удалении от вершины Е быстро спадает, приблизительно следуя закономерности: (острие и экран аппроксимировались конфокальными пароболоидами [1,2]) Е = U/ [кLn (2R/r)], где r – удвоенное фокусное расстояние параболоида; U – приложенное электрическое напряжение; R – расстояние от вершины до экрана; к – коэффициент, зависящий от геометрии установки ≈5÷10. Уменьшая радиус микроострия до 30÷50 нм, или приближая его к противоположному электроду, можно получить Е≈109 В/м уже при напряжении U <100 В.
Высокое электрическое поле у поверхности приводит к проявлению ряда интересных физических эффектов. Одним из наиболее важных с практической точки зрения является автоэлектронная (холодная) эмиссия. Механизм явления состоит в туннельном проникновении электронов из металла в вакуум через потенциальный барьер, который снижается и сужается сильным электрическим полем у вершины микроострия до такой степени, что вероятность проникновения электронов через него достигает заметных величин. Плотность автоэлектронного тока j зависит от величины работы выхода электронов материала поверхности & и напряженности электрического поля. Формула, полученная Фаулером и Нордгеймом [3], хорошо согласуется с экспериментом:
j = 1.54·10—6 {E2/ [& t2 (y)} exp {-6,83·107 &2/3υ (y) /F},
где y = 3.79·10—4 (√E) /&, функции υ (y) и t (y) табулированы.
При достаточно высоком положительном потенциале на микроострие начинается ионизация атомов окружающего газа у его поверхности. Таким образом, оно становится эффективным точечным ионным источником. Так, ионизация атомов гелия начинается при напряженности поля у поверхности равной 4,5·1010 В/м [4].
Третьим важнейшим эффектом, связанным с концентрированием электрического поля, является испарение атомов материала микроострия в достаточно сильном электрическом поле в виде ионов. Именно этот процесс и ограничивает возможности по увеличению напряженности поля у поверхности выше ≈1011 В/м, так как при интенсивном испарении атомов радиус при вершине увеличивается и, соответственно, напряженность снижается. Теория этого явления изложена в [5]. Имеются два подхода к его объяснению. Модель сил изображения рассматривает полевое испарение как удаление металлического иона заряда n через барьер, возникающий при суперпозиции потенциальной энергии -neFx, создаваемой приложенным полем F на расстоянии x от поверхности и потенциальной энергии изображения (ne) 2/4x. Для энергии активации Qn полевого испарения поверхностного атома в виде n – кратного иона получается выражение: Qn= Q0– (ne) 3/2F½, (•)
где Q0 – энергия, требуемая для удаления поверхностного атома в виде n – кратного иона на бесконечность в отсутствие поля.
Альтернативная модель «постионизации» (или обмена зарядом) рассматривает полевую десорбцию атома А с металла М как переход из состояния А+М в состояние Аn++Mn-. Переход происходит на критическом расстоянии хkр, где потенциальные энергии этих двух состояний равны. Для энергии активации получается более сложная формула, требующая знания значительного числа параметров иона:
На вершине микроострия возможно получить рекордно чистую и атомарно – гладкую поверхность. Эта «суперполировка» достигается за счет эффекта испарения материала в сильном электрическом поле. При наличии достаточного электрического поля идеально чистая поверхность может сохраняться неограниченно долго.
Механические свойства
Давно известно, что уменьшение размеров образца способствует повышению его прочности. Особенно возрос интерес к этому явлению в последнее время, в связи с развитием нанотехнологий. Наиболее заметным становится этот эффект при диаметрах меньше 1 мкм. В этом случае прочность повышается в десятки раз и приближается к теоретически предельным значениям. Так, если массивный вольфрам имеет прочность σ = 200 кг/мм2