Читать книгу Вечность. В поисках окончательной теории времени - Шон Б. Кэрролл - Страница 18

Часть I. Время, опыт и Вселенная
Глава 2. Тяжелая рука энтропии
Возвышение атомов

Оглавление

Великолепные догадки Карно, Клаузиуса и их коллег о сути термодинамических явлений лежат все же в области «феноменологических» размышлений. Эти ученые видели общую картину, но не понимали механизмов, которыми она управляется. В частности, они не знали о существовании атомов, поэтому не могли рассматривать температуру, энергию и энтропию как свойства микроскопической среды; они мыслили о них как о реальных объектах, которые существуют сами по себе. В те дни, в частности, довольно распространено было представление об энергии как о некой жидкости, умеющей перетекать из одного тела в другое. У этой «энергии-жидкости» даже было свое название: «теплород». И такого уровня понимания было совершенно достаточно для формулировки законов термодинамики.

Однако в ходе XIX века физики постепенно убеждались, что многие виды материи, с которыми мы имеем дело в реальном мире, можно рассматривать как различные конфигурации фиксированного числа одних и тех же элементарных составляющих – атомов (на самом деле в вопросе принятия атомной теории физиков в то время опережали химики). Это не новая идея, о ней упоминал еще Демокрит и другие мыслители античной Греции, но именно в XIX веке она завоевала популярность и начала развиваться по одной простой причине: только существование атомов могло объяснить многие наблюдаемые свойства химических реакций, которые до этого приходилось принимать как данность. Ученым нравится, когда одна простая идея способна объяснить широкий диапазон наблюдаемых явлений.

Сегодня роль демокритовых атомов играют элементарные частицы, такие как кварки и лептоны, однако идея остается неизменной. То, что современный ученый называет атомом, – это самая маленькая частица материи, которая может выступать как отдельный химический элемент, такой как углерод или азот. Но теперь мы понимаем, что атомы – не неделимые частицы; они состоят из электронов, вращающихся вокруг атомного ядра, а ядро состоит из протонов и нейтронов, которые, в свою очередь, представляют собой различные комбинации кварков. Поиск правил, которым подчиняются эти элементарные строительные кирпичики материи, часто называют «фундаментальной» физикой, хотя более точным (и менее напыщенным) было бы название «элементарная» физика. Впредь я буду использовать термин «атом» в установившемся в XIX веке смысле – как определение химического элемента, а не согласно существовавшему в Древней Греции пониманию об элементарных частицах.

Фундаментальные законы физики обладают одной потрясающей особенностью: несмотря на то что они управляют поведением всей материи во Вселенной, вам не нужно знать их для того, чтобы жить обычной жизнью и справляться с повседневными задачами. Более того, вам было бы чрезвычайно затруднительно обнаружить их всего лишь на основе непосредственного опыта. Так происходит потому, что очень большие наборы частиц подчиняются отдельным, независимым правилам поведения, не привязанным к мелкомасштабным структурам, образующим окружающие нас объекты. Глубинные правила, действующие на эти структуры, называют микроскопическими, или просто фундаментальными, тогда как специальные правила, применимые только к большим системам, – это макроскопические, или эмергентные, правила. Без сомнения, поведение температуры, тепла и т. д. поддается описанию в терминах атомов; это предмет изучения особой дисциплины, называемой статистической механикой. Однако точно так же можно разобраться в поведении этих явлений, не зная об атомах абсолютно ничего. Именно этот феноменологический подход, называемый термодинамикой, мы обсуждаем в этой главе. В физике очень часто случается так, что в сложных макроскопических системах возникают динамические закономерности, являющиеся следствием из микроскопических правил. Несмотря на то что зачастую об этом говорят совсем иначе, никакой конкуренции между фундаментальной физикой и изучением эмергентных явлений нет; это две захватывающие области науки, и развитие обеих принципиально важно для понимания того, как устроен мир вокруг нас.

Одним из первых физиков, поддержавших атомную теорию, был шотландец Джеймс Клерк Максвелл, которому мы также должны быть благодарны за окончательную формулировку современной теории электричества и магнетизма. Максвелл совместно с Больцманом в Австрии (и продолжая работу многих других ученых) использовал идею атомов для объяснения поведения газов в рамках того, что было в то время известно под названием кинетической теории. Максвеллу и Больцману удалось установить, что атомы газа, заключенного в контейнер и содержащегося при определенной температуре, характеризуются определенным распределением скоростей: столько-то атомов двигаются быстро, столько-то медленно и т. д. Конечно же, эти атомы ударяются о стенки контейнера, каждый раз оказывая на нее крошечное воздействие. У суммарного влияния этих крошечных сил есть название: это всего-навсего давление газа. Таким образом, кинетическая теория объяснила свойства газов с помощью более простых правил.

Вечность. В поисках окончательной теории времени

Подняться наверх