Читать книгу The Story of the Atlantic Cable - Sir Charles Bright - Страница 7

Оглавление

Gradual Evolution—The Projectors—Survey of the Route—Soundings—Nature of the Ocean Bed—Formation of the Atlantic Telegraph Company—Raising Capital—Critics, “Croakers,” and Crude Inventors.

As has been shown in the introductory chapter, the efforts of the early projectors of submarine telegraphy were at first confined to connecting countries divided only by narrow seas, or establishing communication between points on the same seaboard. The next step forward, with which we are here immediately concerned—that of spanning the Atlantic Ocean between Europe and America—was aptly characterized at the time as “the great feat of the century.” By its means the people of the two great continents were to speak together in a few moments, though separated by a vast ocean.

This was the first venture in transoceanic telegraphy. There was no applicable data to go upon; for the vast difference between laying short cable-lengths across rivers, bays, etc., in shallow water, and that of laying a long length of cable in depths of over two miles across an open ocean will be easily recognized—at any rate, by the sailor and engineer.

The wires of the Magnetic Telegraph Company{28} had already been carried to various points on the west and south coast of Ireland; and, in 1852, Mr. F. N. Gisborne, a very able English engineer, obtained an exclusive concession for connecting St. Johns, Newfoundland, with Cape Ray, in the Gulf of St. Lawrence, by an overhead telegraph-line. The idea was to “tap” steamers coming from London to Cape Race at St. Johns, and pass messages between that point and Cape Breton, on the other side of the Gulf, by carrier-pigeons. A few miles of cables were made in England, and laid between Prince Edward Island and New Brunswick. Mr. Gisborne then surveyed the route for the land-line across Newfoundland, and had erected some forty miles of it, when the work was stopped for want of funds. When in New York in 1854, Gisborne was introduced to Mr. Cyrus West Field, a retired merchant, who became enthusiastic on the subject, and formed a small, but strong, syndicate for the practical realization of Gisborne’s scheme. A cable eighty-five miles in length was made in England, to be laid between Cape Breton and Newfoundland; but after forty miles had been paid out, rough weather ensued, and the undertaking had to be abandoned. A fresh instalment was, however, sent out in 1856, and successfully laid across the Gulf, thus connecting St. Johns with Canada and the American lines. The conductor of this line instead of being a single solid wire was, for the first time, composed of several small wires laid up together in strand form—with a view to avoiding a flaw in any single wire stopping the conductivity, besides affording increased mechanical pliability.{29}

Fig. 1.—Newfoundland Telegraph Station, 1855.

{30}

The feasibility of uniting the two vast systems of telegraphy had engaged the consideration of some of those most prominently associated with electric telegraphy on both sides of the Atlantic. It had been already shown that cables could be successfully laid and maintained in comparatively moderate depths in the Mediterranean, Black Sea, etc., but the nearest points between the British Isles and Newfoundland are nearly 2,000 miles apart. The greatest length of submarine line which had hitherto been effectively submerged—110 miles—formed but an insignificant portion of such an enormous distance; and that, too, involving a depth of nearly three miles for a large proportion of the way, instead of about 300 fathoms.

Apart from the engineering difficulties entailed by this vast distance and depth, the question was then undetermined as to the possibility of conveying electric currents through such a length in an unbroken circuit, and at a speed that would enable messages to be passed rapidly enough in succession to prove remunerative. Various researches had been made—by Faraday among others—with a view to determining the law in relation to the velocity of electricity through a conducting-wire.

The retarding effect of the insulating covering had already been discovered; but the exact formula for the working speed of cables of definite proportions and lengths was not correctly arrived at till some years later. The similarity, in principle, of a cable to a Leyden jar was first pointed out by Mr. Edward Brailsford Bright in the course of a paper read before the British Association{31} in 1854. He showed that on charging a gutta-percha-covered wire, the insulating material tended to absorb and retain a part of the charge and to hold back, as a static charge, some of the electricity flowing as current through the conductor—just as the charge (of opposite potential) induced on the outside plate of a Leyden jar statically holds the primary charge on the inner plate, until either are neutralized. The brothers, Edward and Charles Bright, made a series of extensive experiments on long lengths of underground wires; and these investigations were supplemented later by Mr. Edward Orange Wildman Whitehouse (formerly a medical practitioner), who became electrician to the first Atlantic cable. Mr. Whitehouse was a man of very high intellectual and scientific attainments, and a most ingenious and painstaking experimenter.

The retardation of the electric current through an insulated wire due to induction—a phenomenon practically unknown with bare, aerial wires suspended on posts, and of no consequence with quite short cables—was overcome by using a succession of opposite currents. By this means the latter, or retarded, portion of each current was “wiped out” by the opposite current immediately following it; and thus a series of electric waves could be made to traverse the cable, one after the other, several being in the act of passing onward at different points along the conductor at the same time. The Messrs. Bright devised a special key (embodied with a patent for signaling through long cables) for transmitting these alternating currents from the battery; and this was followed by others to effect the same object—one{32} by Professor Thomson (now Lord Kelvin), who became electrical adviser to the enterprise.

Fig. 2.—The Brooke “Sounder.”

A certain degree of knowledge regarding the nature of the bed of the Atlantic Ocean was now available; for in the summer of 1856 a series of soundings had been taken by Lieutenant O. H. Berryman, U.S.N., from U.S.N. Arctic, and also independently by Commander Joseph Dayman, R.N. (H.M.S. Cyclops), showing what was called “a gently undulating plateau extending the whole distance between Ireland and British North America.” These depths (averaging about 2½ miles) compared favorably with those that had{33} presented themselves farther southward. The ground was found to shoal gradually on the Newfoundland side, but rose more rapidly toward the Irish shore. The soundings were taken with the ingenious apparatus of Lieut. J. M. Brooke, U.S.N. (Fig. 2), which formed the prototype of all similar deep-sea sounding-tubes of the present day. In this, at the extremity of the sounding-line a light iron rod, C, hollowed at its lower end, passed loosely through a hole in the center of a cannon-ball weight, A, which is fastened to the line by a couple of links. On the bottom being touched, the links reverse position, owing to the weight being taken off, and the cannon-ball, or plummet, B, being set free, remains on the ground, leaving the light tube only to be drawn up with the line.[8] In the act of grounding, however, the open end of the tube presses into the bottom, a specimen of which is consequently obtained—unless it be rock or coral. An oozy bottom was found throughout the soundings. The specimens brought up to the surface were shown under the microscope to consist (Fig. 3) of the tiny shells of animalculæ—the indestructible outside skeletons of the animal organisms known as diatomaceæ and globigirenæ foraminiferæ largely composed of carbonate of lime.[9] No sand or gravel{34} was found on the ocean bed, from which it was deduced that no currents, or other disturbing elements, existed at those depths; for otherwise these frail shells would have been rubbed to pieces. As it was, they came up entire—without a sign of abrasion. The plateau or ridge—which was found to extend for some 400 miles in breadth—was considered a veritable feather-bed for a{35} cable. Indeed, in his subsequent report to the United States navy, Lieut. M. F. Maury, U.S.N., spoke of this “shallow platform or table-land” as having been “apparently placed for the express purpose of holding the wires of a submarine telegraph and of keeping them out of harm’s way.” Lieutenant Maury concluded his report as follows: “I do not, however, pretend to consider the question as to the possibility of finding a time calm enough, the sea smooth enough, a wire long enough, or a ship big enough, to lay a coil of wire sixteen hundred miles in length.” These words form amusing reading nowadays, as do also the suggestions of “telegraph plateaus” furnished by Providence as a resting-place for the Atlantic cable. The “plateau” idea was only true to the extent that the bed of the ocean in these regions afforded a smooth surface as compared with the Alpine character prevailing north and south of it. These soundings at something like fifty-mile intervals were not, however, originally undertaken with the Atlantic cable expressly in view. Indeed, for many years—until experience pointed to the absolute necessity—no special surveys were made previous to the laying of a cable.[10]

Fig. 3.—Specimen of the Ocean Bed. (Magnified 10,000 times.)

Formation of the Atlantic Telegraph Company, 1856.—Cyrus Field, besides being a man of sanguine temperament and intense business energy,{36} also possessed shrewdness and foresight. Thus, he immediately recognized the value of Gisborne’s concessions, and determined to turn them to the fullest account. His extraordinary acumen told him that by improving on the exclusive landing rights already obtained in America, he would place himself in the strongest possible position in regard to the big notion of an Atlantic cable. No sooner had he made up his mind to this effect than he set to work to accomplish the idea; and very soon exclusive rights were obtained in his name (Gisborne having entirely dropped out of the negotiations) for practically every important point in connection with the landing of an Atlantic cable on British North American territory. The period for these rights was fifty years, besides which he obtained various grants of land. Thus it will be seen he had assured himself a very strong position in connection with any project for an Atlantic cable without having had (in the words of his brother, Henry Field) “any experience in the business of laying a submarine telegraph.” Mr. Field’s syndicate was about this time registered as the New York, Newfoundland, and London Telegraph Company, which was now capable of debarring competition for a considerable period, at any rate.

Armed with this apparent monopoly, Mr. Field went over to England, empowered by his associates to deal with the exclusive concession possessed by the above company for the coast of Newfoundland and other rights in Nova Scotia, etc. He had already been over before in connection with the Gulf of St. Lawrence cable. He had, on that occasion, met Mr. John Watkins{37} Brett, who thereupon interested himself financially in the “Newfoundland Company.” On his second mission (in July, 1856) he at once put himself into communication with Mr. (afterward Sir Charles) Bright, who was known to be already making various preparations with a view to an Atlantic cable in connection with the Magnetic Telegraph system. On September 26, 1856, an agreement was entered into between Brett, Bright, and Field in the following terms, their signatures being reproduced as they appear at the foot of the document:

“Mutually, and on equal terms we engage to exert ourselves for the purpose of forming a Company for establishing and working of electric telegraphic communication between Newfoundland and Ireland, such Company to be called the Atlantic Telegraph Company, or by such other name as the parties hereto shall jointly agree upon.”

{38}

John Watkins Brett (Projector). Charles Tilston Bright (Projector and Engineer). Cyrus West Field (Projector).

{39}

Let us see now what the united efforts of these three “projectors” had before them. The ground had already been to some extent cleared by their individual exertions when working independently, as well as in other ways. Bright, and also Whitehouse, had already proved the possibility of signaling through such a length of insulated wire as that involved by an Atlantic line. The soundings that had been recently taken showed that the depth was only unfavorable in the sense of being something far—but uniformly—greater than that in which any cable had previously been submerged. Finally, the favorable nature of the landing rights secured by Field on the other side went a long way toward insuring against competition, apart from the actual permission. There yet remained, then, the necessity of obtaining (a) Government recognition, and, if possible, Government subsidies; (b) the confidence and pecuniary support of the moneyed mercantile class; besides which a suitable form of cable had to be designed and manufactured, as well as all the necessary apparatus for the laying of the same.

As a result of considerable discussion, the two governments concerned eventually came to recognize the importance and feasibility of this undertaking for linking together the two great English-speaking nations, and the benefits it would confer upon humanity. Both the British and United States Governments gave a subsidy, in return for free transmission of their messages, with priority over others.[11] This, however, only{40} jointly amounted to 8 per cent of the capital, and was payable only while the cable worked.[12]

The Atlantic Telegraph Company was registered on October 20, 1856, and the £350,000 decided on as the necessary capital for the work was then sought and obtained in an absolutely unprecedented fashion. There was no promotion money, no prospectus was published, no advertisements, no brokers, and no commissions, neither was there at that time any board of directors or executive officers. The election of a board was reserved for a meeting of shareholders, to be held after allotment by the provisional committee, consisting of the subscribers to the Memorandum of Association. Any remuneration to the projectors was left wholly dependent on, and subsequent to, the shareholders’ profits being over 10 per cent per annum, after which the projectors were to divide the surplus.

The campaign was opened in Liverpool, the headquarters of the “Magnetic” Company, the greater proportion of whose shareholders were business men—merchants and shipowners—mainly hailing from Liverpool, Manchester, Glasgow, and London, who appreciated the value of America being connected telegraphically with Great Britain and Europe through their Irish lines.

The first meeting of the “Atlantic” Company was convened for November 12, 1856, at the underwriters’ rooms in the Liverpool Exchange. This was called together by means of a small circular{41} on a half-sheet of note-paper, issued by Mr. E. B. Bright, manager of the “Magnetic” Company. The result was a crowded gathering composed of the wealth, enterprise, and influence of Liverpool and other important business and manufacturing centers. Similar meetings were also held in Manchester and Glasgow, and a public subscription list was opened at the “Magnetic” Company’s office of each town. In the course of a few days the entire capital was raised, by the issue of 350 shares of £1,000 each, chiefly taken up by the shareholders of the “Magnetic” Company. Mr. Cyrus Field had reserved £75,000 for American subscription, for which he signed, but his confidence in his compatriots turned out to be greatly misplaced. The result has been thus recounted by his brother: “He (Cyrus Field) thought that one-fourth of the stock should be held in this country (the United States), and he did not doubt from the eagerness with which three-fourths had been taken in England, that the remainder would be at once subscribed in America.” In point of fact, it was only after much trouble that subscribers were obtained in the States for a total of twenty-seven shares, or less than one-twelfth of the total capital. Thus, notwithstanding their professed enthusiasm, the faith of the Americans in the project proved to be strictly limited. At any rate, they did not rise to the occasion. Indeed, the undertaking was very much an affair of the Magnetic Telegraph Company, the officers of which led the shareholders to take a lively interest from the first in the Atlantic project as forming the nucleus of a great extension of business.{42}

The first meeting of shareholders took place on December 9, 1856, when a board of directors was elected. This included the late George Peabody, Samuel Gurney, T. H. Brooking, T. A. Hankey, C. M. (afterward Sir Curtis) Lampson, and Sir William Brown, of Liverpool, no less than nine (representing the interests of different towns) being also directors of the “Magnetic” Company, including Mr. J. W. Brett. The first chairman was Sir William Brown, subsequently succeeded by the Right Hon. James Stuart-Wortley, M.P. Two names may be further specially referred to as destined, in different ways, to have the greatest possible influence in the subsequent development of submarine telegraphy. Mr. (afterward Sir John) Pender, who was then a “Magnetic” director, afterward took a leading part in the vast extensions that have followed to the Mediterranean, India, China, Australasia, the Cape, and Brazil, besides several of the subsequent Atlantic lines. Up to the time of his death he was chairman of something like a dozen, more or less allied, cable companies, representing some £30,000,000 of capital, and mainly organized through his foresight and business ability. Then, again, Prof. William Thomson, of Glasgow University, was a tower of scientific strength on the Board. He had been from the outset an ardent believer in the Atlantic line. His acquisition as a director was destined to prove of vast importance in influencing the development of transoceanic communication, for his subsequent experiments on the cable during 1857-’58 led up to his invention of the mirror galvanometer and signaling instrument, whereby{43} the most attenuated currents of electricity, which are incapable of producing visible signals on other telegraphic apparatus, are so magnified by the use of a reflected beam of light as to afford signals readily legible. (A full description of this invention will be found in its proper place—farther on.)

Mr. (afterward Sir Charles) Bright was appointed engineer-in-chief, with Mr. Wildman Whitehouse (who had become closely associated with the project) as electrician, while Mr. Cyrus Field became general manager.

It must not be supposed that because the capital was raised without great difficulty, and because the project had far-seeing supporters, that there was any lack of “croakers.” On the contrary, the prejudice against the line as a “mad scheme” ran perhaps even higher than in the case of most great and novel undertakings. The critics were many, and with our present knowledge it is difficult to recognize that many of the assertions and suggestions emanated from men of science as well as from eminent engineers and sailors, who, we should say nowadays, ought to have known better. For example, the late Prof. Sir G. B. Airy, F.R.S. (Astronomer Royal), announced to the world: (1) that “it was a mathematical impossibility to submerge a cable in safety at so great a depth”; and (2) that “if it were possible, no signals could be transmitted through so great a length.”

From the very outset of the project the engineer-in-chief (as soon as appointed) had to deal with wild and undeveloped criticisms and{44} suggestions, partly from “inventors,” who desired to reap personal benefit by the scheme, and amateurs in the art generally, all of which appear singularly ludicrous nowadays.

The fallacy most frequently introduced was, perhaps, that the cable would be suspended in the water at a certain depth. Naturally the pressure increases with the depth on all sides of a cable (or anything else) in its descent through the sea, but, as practically everything on earth is more compressible than water, it is obvious that the iron wire, yarn, gutta-percha, and copper conductor, forming the cable, must be more and more compressed as they descend. Thus the cable constantly increases its density, or specific gravity, in going down, while the equal bulk of the water surrounding it continues to have, practically speaking, very nearly the same specific gravity as at the surface. Without this valuable property of water, the hydraulic press would not exist.

The strange blunder here described was participated in by some of the most distinguished naval men. As an instance, even at a comparatively recent period, Captain Marryat, R.N., the famous nautical author, writes of the sea: “What a mine of wealth must lie buried in its sands. What riches lie entangled among its rocks, or remain suspended in its unfathomable gulf, where the compressed fluid is equal in gravity to that which it encircles.”[13]

To obviate this non-existent difficulty, it was gravely proposed to festoon the cable across, at a given maximum depth between buoys and{45} floats, or even parachutes—at which ships might call, hook on, and talk telegraphically to shore!

Others again proposed to apply gummed cotton to the outside of the cable in connection with the above burying system. The idea was that the gum (or glue) would gradually dissolve and so let the cable down “quietly”!

As an example of the crude notions prevailing in the mind of one gentleman with a proposed invention, to whom was shown an inch specimen of the cable, he remarked: “Now I understand how you stow it away on board. You cut it up into bits beforehand, and then join up the pieces as you lay.”

Some again absolutely went so far as to take out patents for converting the laying vessel into a huge factory, with a view to making the cable on board in one continuous length, and submerging it during the process!

Finally, one naval expert assured the company that “no other machinery for paying out was necessary than a handspike to stop the egress of the cable.{46}”

The Story of the Atlantic Cable

Подняться наверх