Читать книгу Life's Dawn on Earth - Sir John William Dawson - Страница 4

Оглавление

Fig. 4. The Laurentian Nucleus of the American Continent.

Rocks so highly altered as the Laurentian beds can scarcely be expected to hold well characterized fossil remains, and those geologists who entertained any hope that such remains might have been preserved, long looked in vain for their actual discovery. Still, as astronomers have suspected the existence of unknown planets from observing perturbations not accounted for, and as voyagers have suspected the approach to unknown regions by the appearance of floating wood or stray land birds, anticipations of such discoveries have been entertained and expressed from time to time. Lyell, Dana, and Sterry Hunt more especially, have committed themselves to such speculations. The reasons assigned may be stated thus:—

Assuming the Laurentian rocks to be altered sediments, they must, from their great extent, have been deposited in the ocean; and if there had been no living creatures in the waters, we have no reason to believe that they would have consisted of anything more than such sandy and muddy debris as may be washed away from wasting rocks originally of igneous origin. But the Laurentian beds contain other materials than these. No formations of any geological age include thicker or more extensive limestones. One of the beds measured by the officers of the Geological Survey, is stated to be 1500 feet in thickness, another is 1250 feet thick, and a third 750 feet; making an aggregate of 3500 feet.[B] These beds may be traced, with more or less interruption, for hundreds of miles. Whatever the origin of such limestones, it is plain that they indicate causes equal in extent, and comparable in power and duration, with those which have produced the greatest limestones of the later geological periods. Now, in later formations, limestone is usually an organic rock, accumulated by the slow gathering from the sea-water, or its plants, of calcareous matter, by corals, foraminifera, or shell-fish, and the deposition of their skeletons, either entire or in fragments, in the sea-bottom. The most friable chalk and the most crystalline limestones have alike been formed in this way. We know of no reason why it should be different in the Laurentian period. When, therefore, we find great and conformable beds of limestone, such as those described by Sir William Logan in the Laurentian of Canada, we naturally imagine a quiet sea-bottom, in which multitudes of animals of humble organization were accumulating limestone in their hard parts, and depositing this in gradually increasing thickness from age to age. Any attempts to account otherwise for these thick and greatly extended beds, regularly interstratified with other deposits, have so far been failures, and have arisen either from a want of comprehension of the nature and magnitude of the appearances to be explained, or from the error of mistaking the true bedded limestones for veins of calcareous spar.

[B] Logan: Geology of Canada, p. 45.

The Laurentian rocks contain great quantities of carbon, in the form of graphite or plumbago. This does not occur wholly, or even principally, in veins or fissures, but in the substance of the limestone and gneiss, and in regular layers. So abundant is it, that I have estimated the amount of carbon in one division of the Lower Laurentian of the Ottawa district at an aggregate thickness of not less than twenty to thirty feet, an amount comparable with that in the true coal formation itself. Now we know of no agency existing in present or in past geological time capable of deoxidizing carbonic acid, and fixing its carbon as an ingredient in permanent rocks, except vegetable life. Unless, therefore, we suppose that there existed in the Laurentian age a vast abundance of vegetation, either in the sea or on the land, we have no means of explaining the Laurentian graphite.

The Laurentian formation contains great beds of oxide of iron, sometimes seventy feet in thickness. Here again we have an evidence of organic action; for it is the deoxidizing power of vegetable matter which has in all the later formations been the efficient cause in producing bedded deposits of iron. This is the case in modern bog and lake ores, in the clay iron-stones of the coal measures, and apparently also in the great ore beds of the Silurian rocks. May not similar causes have been at work in the Laurentian period?

Any one of these reasons might, in itself, be held insufficient to prove so great and, at first sight, unlikely a conclusion as that of the existence of abundant animal and vegetable life in the Laurentian; but the concurrence of the whole in a series of deposits unquestionably marine, forms a chain of evidence so powerful that it might command belief even if no fragment of any organic and living form or structure had ever been recognised in these ancient rocks.

Such was the condition of the matter until the existence of supposed organic remains was announced by Sir W. Logan, at the American Association for the Advancement of Science, in Springfield, in 1859; and we may now proceed to narrate the manner of this discovery, and how it has been followed up.

Before doing so, however, let us visit Eozoon in one of its haunts among the Laurentian Hills. One of the most noted repositories of its remains is the great Grenville band of limestone (see section, fig. 3, and map), the outcrop of which may be seen in our map of the country near the Ottawa, twisting itself like a great serpent in the midst of the gneissose rocks; and one of the most fruitful localities is at a place called Côte St. Pierre on this band. Landing, as I did, with Mr. Weston, of the Geological Survey, last autumn, at Papineauville, we find ourselves on the Laurentian rocks, and pass over one of the great bands of gneiss for about twelve miles, to the village of St. André Avelin. On the road we see on either hand abrupt rocky ridges, partially clad with forest, and sometimes showing on their flanks the stratification of the gneiss in very distinct parallel bands, often contorted, as if the rocks, when soft, had been wrung as a washer-woman wrings clothes. Between the hills are little irregular valleys, from which the wheat and oats have just been reaped, and the tall Indian corn and yellow pumpkins are still standing in the fields. Where not cultivated, the land is covered with a rich second growth of young maples, birches, and oaks, among which still stand the stumps and tall scathed trunks of enormous pines, which constituted the original forest. Half way we cross the Nation River, a stream nearly as large as the Tweed, flowing placidly between wooded banks, which are mirrored in its surface; but in the distance we can hear the roar of its rapids, dreaded by lumberers in their spring drivings of logs, and which we were told swallowed up five poor fellows only a few months ago. Arrived at St. André, we find a wider valley, the indication of the change to the limestone band, and along this, with the gneiss hills still in view on either hand, and often encroaching on the road, we drive for five miles more to Côte St. Pierre. At this place the lowest depression of the valley is occupied by a little pond, and, hard by, the limestone, protected by a ridge of gneiss, rises in an abrupt wooded bank by the roadside, and a little further forms a bare white promontory, projecting into the fields. Here was Mr. Love’s original excavation, whence some of the greater blocks containing Eozoon were taken, and a larger opening made by an enterprising American on a vein of fibrous serpentine, yielding “rock cotton,” for packing steam pistons and similar purposes. (Figs. 5 and 6.)

Fig. 5. Attitude of Limestone at St. Pierre.

(a.) Gneiss band in the Limestone. (b.) Limestone with Eozoon. (c.) Diorite and Gneiss.

Fig. 6. Gneiss and Limestone at St. Pierre.

(a.) Limestone. (b.) Gneiss and Diorite.

The limestone is here highly inclined and much contorted, and in all the excavations a thickness of about 100 feet of it may be exposed. It is white and crystalline, varying much however in coarseness in different bands. It is in some layers pure and white, in others it is traversed by many gray layers of gneissose and other matter, or by irregular bands and nodules of pyroxene and serpentine, and it contains subordinate beds of dolomite. In one layer only, and this but a few feet thick, does the Eozoon occur in any abundance in a perfect state, though fragments and imperfectly preserved specimens abound in other parts of the bed. It is a great mistake to suppose that it constitutes whole beds of rock in an uninterrupted mass. Its true mode of occurrence is best seen on the weathered surfaces of the rock, where the serpentinous specimens project in irregular patches of various sizes, sometimes twisted by the contortion of the beds, but often too small to suffer in this way. On such surfaces the projecting patches of the fossil exhibit laminæ of serpentine so precisely like the Stromatoporæ of the Silurian rocks, that any collector would pounce upon them at once as fossils. In some places these small weathered specimens can be easily chipped off from the crumbling surface of the limestone; and it is perhaps to be regretted that they have not been more extensively shown to palæontologists, with the cut slices which to many of them are so problematical. One of the original specimens, brought from the Calumet, and now in the Museum of the Geological Survey of Canada, was of this kind, and much finer specimens from Côte St. Pierre are now in that collection and in my own. A very fine example is represented, on a reduced scale, in Plate. III., which is taken from an original photograph.[C] In some of the layers are found other and more minute fossils than Eozoon, and these, together with its fragmental remains, as ingredients in the limestone, will be discussed in the sequel. We may merely notice here that the most abundant layer of Eozoon at this place, occurs near the base of the great limestone band, and that the upper layers in so far as seen are less rich in it. Further, there is no necessary connection between Eozoon and the occurrence of serpentine, for there are many layers full of bands and lenticular masses of that mineral without any Eozoon except occasional fragments, while the fossil is sometimes partially mineralized with pyroxene, dolomite, or common limestone. The section in fig. 5 will serve to show the attitude of the limestone at this place, while the more general section, fig. 3, taken from Sir William Logan, shows its relation to the other Laurentian rocks, and the sketch in fig. 6 shows its appearance as a feature on the surface of the country.

[C] By Mr. Weston, of the Geological Survey of Canada.

NOTES TO CHAPTER II.

(A.) Sir William E. Logan on the Laurentian System.

[Journal of Geological Society of London, February, 1865.]

After stating the division of the Laurentian series into the two great groups of the Upper and Lower Laurentian, Sir William goes on to say:—

"The united thickness of these two groups in Canada cannot be less than 30,000 feet, and probably much exceeds it. The Laurentian of the west of Scotland, according to Sir Roderick Murchison, also attains a great thickness. In that region the Upper Laurentian or Labrador series, has not yet been separately recognised; but from Mr. McCulloch’s description, as well as from the specimens collected by him, and now in the Museum of the Geological Society of London, it can scarcely be doubted that the Labrador series occurs in Skye. The labradorite and hypersthene rocks from that island are identical with those of the Labrador series in Canada and New York, and unlike those of any formation at any other known horizon. This resemblance did not escape the notice of Emmons, who, in his description of the Adirondack Mountains, referred these rocks to the hypersthene rock of McCulloch, although these observers, on the opposite sides of the Atlantic, looked upon them as unstratified. In the Canadian Naturalist for 1862, Mr. Thomas Macfarlane, for some time resident in Norway, and now in Canada, drew attention to the striking resemblance between the Norwegian primitive gneiss formation, as described by Naumann and Keilhau, and observed by himself, and the Laurentian, including the Labrador group; and the equally remarkable similarity of the lower part of the primitive slate formation to the Huronian series, which is a third Canadian group. These primitive series attain a great thickness in the north of Europe, and constitute the main features of Scandinavian geology.

"In Bavaria and Bohemia there is an ancient gneissic series. After the labours in Scotland, by which he was the first to establish a Laurentian equivalent in the British Isles, Sir Roderick Murchison, turning his attention to this central European mass, placed it on the same horizon. These rocks, underlying Barrande’s Primordial zone, with a great development of intervening clay-slate, extend southward in breadth to the banks of the Danube, with a prevailing dip towards the Silurian strata. They had previously been studied by Gümbel and Crejci, who divided them into an older reddish gneiss and a newer grey gneiss. But, on the Danube, the mass which is furthest removed from the Silurian rocks being a grey gneiss, Gümbel and Crejci account for its presence by an inverted fold in the strata; while Sir Roderick places this at the base, and regards the whole as a single series, in the normal fundamental position of the Laurentian of Scotland and of Canada. Considering the colossal thickness given to the series (90,000 feet), it remains to be seen whether it may not include both the Lower and Upper Laurentian, and possibly, in addition, the Huronian.

"This third Canadian group (the Huronian) has been shown by my colleague, Mr. Murray, to be about 18,000 feet thick, and to consist chiefly of quartzites, slate-conglomerates, diorites, and limestones. The horizontal strata which form the base of the Lower Silurian in western Canada, rest upon the upturned edges of the Huronian series; which, in its turn, unconformably overlies the Lower Laurentian. The Huronian is believed to be more recent than the Upper Laurentian series, although the two formations have never yet been seen in contact.

"The united thickness of these three great series may possibly far surpass that of all the succeeding rocks from the base of the Palæozoic series to the present time. We are thus carried back to a period so far remote, that the appearance of the so-called Primordial fauna may by some be considered a comparatively modern event. We, however, find that, even during the Laurentian period, the same chemical and mechanical processes which have ever since been at work disintegrating and reconstructing the earth’s crust were in operation as now. In the conglomerates of the Huronian series there are enclosed boulders derived from the Laurentian, which seem to show that the parent rock was altered to its present crystalline condition before the deposit of the newer formation; while interstratified with the Laurentian limestones there are beds of conglomerate, the pebbles of which are themselves rolled fragments of a still older laminated sand-rock, and the formation of these beds leads us still further into the past.

"In both the Upper and Lower Laurentian series there are several zones of limestone, each of sufficient volume to constitute an independent formation. Of these calcareous masses it has been ascertained that three, at least, belong to the Lower Laurentian. But as we do not as yet know with certainty either the base or the summit of this series, these three may be conformably followed by many more. Although the Lower and Upper Laurentian rocks spread over more than 200,000 square miles in Canada, only about 1500 square miles have yet been fully and connectedly examined in any one district, and it is still impossible to say whether the numerous exposures of Laurentian limestone met with in other parts of the province are equivalent to any of the three zones, or whether they overlie or underlie them all."

(B.) Dr. Sterry Hunt on the Probable Existence of Life in the Laurentian Period.

Dr. Hunt’s views on this subject were expressed in the American Journal of Science, [2], vol. xxxi., p. 395. From this article, written in 1861, after the announcement of the existence of laminated forms supposed to be organic in the Laurentian, by Sir W. E. Logan, but before their structure and affinities had been ascertained, I quote the following sentences:—

“We see in the Laurentian series beds and veins of metallic sulphurets, precisely as in more recent formations; and the extensive beds of iron ore, hundreds of feet thick, which abound in that ancient system, correspond not only to great volumes of strata deprived of that metal, but, as we may suppose, to organic matters which, but for the then great diffusion of iron-oxyd in conditions favourable for their oxidation, might have formed deposits of mineral carbon far more extensive than those beds of plumbago which we actually meet in the Laurentian strata. All these conditions lead us then to conclude the existence of an abundant vegetation during the Laurentian period.”

(C.) The Graphite of the Laurentian.

The following is from a paper by the author, in the Journal of the Geological Society, for February, 1870:—

“The graphite of the Laurentian of Canada occurs both in beds and in veins, and in such a manner as to show that its origin and deposition are contemporaneous with those of the containing rock. Sir William Logan states[D] that ‘the deposits of plumbago generally occur in the limestones or in their immediate vicinity, and granular varieties of the rock often contain large crystalline plates of plumbago. At other times this mineral is so finely disseminated as to give a bluish-gray colour to the limestone, and the distribution of bands thus coloured, seems to mark the stratification of the rock.’ He further states:—‘The plumbago is not confined to the limestones; large crystalline scales of it are occasionally disseminated in pyroxene rock or pyrallolite, and sometimes in quartzite and in feldspathic rocks, or even in magnetic oxide of iron.’ In addition to these bedded forms, there are also true veins in which graphite occurs associated with calcite, quartz, orthoclase, or pyroxene, and either in disseminated scales, in detached masses, or in bands or layers ‘separated from each other and from the wall rock by feldspar, pyroxene, and quartz.’ Dr. Hunt also mentions the occurrence of finely granular varieties, and of that peculiarly waved and corrugated variety simulating fossil wood, though really a mere form of laminated structure, which also occurs at Warrensburgh, New York, and at the Marinski mine in Siberia. Many of the veins are not true fissures, but rather constitute a network of shrinkage cracks or segregation veins traversing in countless numbers the containing rock, and most irregular in their dimensions, so that they often resemble strings of nodular masses. It has been supposed that the graphite of the veins was originally introduced as a liquid hydrocarbon. Dr. Hunt, however, regards it as possible that it may have been in a state of aqueous solution;[E] but in whatever way introduced, the character of the veins indicates that in the case of the greater number of them the carbonaceous material must have been derived from the bedded rocks traversed by these veins, while there can be no doubt that the graphite found in the beds has been deposited along with the calcareous matter or muddy and sandy sediment of which these beds were originally composed.

[D] Geology of Canada, 1863.

[E] Report of the Geological Survey of Canada, 1866.

“The quantity of graphite in the Lower Laurentian series is enormous. In a recent visit to the township of Buckingham, on the Ottawa River, I examined a band of limestone believed to be a continuation of that described by Sir W. E. Logan as the Green Lake Limestone. It was estimated to amount, with some thin interstratified bands of gneiss, to a thickness of 600 feet or more, and was found to be filled with disseminated crystals of graphite and veins of the mineral to such an extent as to constitute in some places one-fourth of the whole; and making every allowance for the poorer portions, this band cannot contain in all a less vertical thickness of pure graphite than from twenty to thirty feet. In the adjoining township of Lochaber Sir W. E. Logan notices a band from twenty-five to thirty feet thick, reticulated with graphite veins to such an extent as to be mined with profit for the mineral. At another place in the same district a bed of graphite from ten to twelve feet thick, and yielding twenty per cent. of the pure material, is worked. When it is considered that graphite occurs in similar abundance at several other horizons, in beds of limestone which have been ascertained by Sir W. E. Logan to have an aggregate thickness of 3500 feet, it is scarcely an exaggeration to maintain that the quantity of carbon in the Laurentian is equal to that in similar areas of the Carboniferous system. It is also to be observed that an immense area in Canada appears to be occupied by these graphitic and Eozoon limestones, and that rich graphitic deposits exist in the continuation of this system in the State of New York, while in rocks believed to be of this age near St. John, New Brunswick, there is a very thick bed of graphitic limestone, and associated with it three regular beds of graphite, having an aggregate thickness of about five feet.[F]

[F] Matthew, in Quart. Journ. Geol. Soc., vol. xxi., p. 423. Acadian Geology, p. 662.

“It may fairly be assumed that in the present world and in those geological periods with whose organic remains we are more familiar than with those of the Laurentian, there is no other source of unoxidized carbon in rocks than that furnished by organic matter, and that this has obtained its carbon in all cases, in the first instance, from the deoxidation of carbonic acid by living plants. No other source of carbon can, I believe, be imagined in the Laurentian period. We may, however, suppose either that the graphitic matter of the Laurentian has been accumulated in beds like those of coal, or that it has consisted of diffused bituminous matter similar to that in more modern bituminous shales and bituminous and oil-bearing limestones. The beds of graphite near St. John, some of those in the gneiss at Ticonderoga in New York, and at Lochaber and Buckingham and elsewhere in Canada, are so pure and regular that one might fairly compare them with the graphitic coal of Rhode Island. These instances, however, are exceptional, and the greater part of the disseminated and vein graphite might rather be compared in its mode of occurrence to the bituminous matter in bituminous shales and limestones.

“We may compare the disseminated graphite to that which we find in those districts of Canada in which Silurian and Devonian bituminous shales and limestones have been metamorphosed and converted into graphitic rocks not dissimilar to those in the less altered portions of the Laurentian.[G] In like manner it seems probable that the numerous reticulating veins of graphite may have been formed by the segregation of bituminous matter into fissures and planes of least resistance, in the manner in which such veins occur in modern bituminous limestones and shales. Such bituminous veins occur in the Lower Carboniferous limestone and shale of Dorchester and Hillsborough, New Brunswick, with an arrangement very similar to that of the veins of graphite; and in the Quebec rocks of Point Levi, veins attaining to a thickness of more than a foot, are filled with a coaly matter having a transverse columnar structure, and regarded by Logan and Hunt as an altered bitumen. These palæozoic analogies would lead us to infer that the larger part of the Laurentian graphite falls under the second class of deposits above mentioned, and that, if of vegetable origin, the organic matter must have been thoroughly disintegrated and bituminized before it was changed into graphite. This would also give a probability that the vegetation implied was aquatic, or at least that it was accumulated under water.

[G] Granby, Melbourne, Owl’s Head, etc., Geology of Canada, 1863, p. 599.

“Dr. Hunt has, however, observed an indication of terrestrial vegetation, or at least of subaërial decay, in the great beds of Laurentian iron ore. These, if formed in the same manner as more modern deposits of this kind, would imply the reducing and solvent action of substances produced in the decay of plants. In this case such great ore beds as that of Hull, on the Ottawa, seventy feet thick, or that near Newborough, 200 feet thick,[H] must represent a corresponding quantity of vegetable matter which has totally disappeared. It may be added that similar demands on vegetable matter as a deoxidizing agent are made by the beds and veins of metallic sulphides of the Laurentian, though some of the latter are no doubt of later date than the Laurentian rocks themselves.

[H] Geology of Canada, 1863.

“It would be very desirable to confirm such conclusions as those above deduced by the evidence of actual microscopic structure. It is to be observed, however, that when, in more modern sediments, algæ have been converted into bituminous matter, we cannot ordinarily obtain any structural evidence of the origin of such bitumen, and in the graphitic slates and limestones derived from the metamorphosis of such rocks no organic structure remains. It is true that, in certain bituminous shales and limestones of the Silurian system, shreds of organic tissue can sometimes be detected, and in some cases, as in the Lower Silurian limestone of the La Cloche mountains in Canada, the pores of brachiopodous shells and the cells of corals have been penetrated by black bituminous matter, forming what may be regarded as natural injections, sometimes of much beauty. In correspondence with this, while in some Laurentian graphitic rocks, as, for instance, in the compact graphite of Clarendon, the carbon presents a curdled appearance due to segregation, and precisely similar to that of the bitumen in more modern bituminous rocks, I can detect in the graphitic limestones occasional fibrous structures which may be remains of plants, and in some specimens vermicular lines, which I believe to be tubes of Eozoon penetrated by matter once bituminous, but now in the state of graphite.

“When palæozoic land-plants have been converted into graphite, they sometimes perfectly retain their structure. Mineral charcoal, with structure, exists in the graphitic coal of Rhode Island. The fronds of ferns, with their minutest veins perfect, are preserved in the Devonian shales of St. John, in the state of graphite; and in the same formation there are trunks of Conifers (Dadoxylon ouangondianum) in which the material of the cell-walls has been converted into graphite, while their cavities have been filled with calcareous spar and quartz, the finest structures being preserved quite as well as in comparatively unaltered specimens from the coal-formation.[I] No structures so perfect have as yet been detected in the Laurentian, though in the largest of the three graphitic beds at St. John there appear to be fibrous structures which I believe may indicate the existence of land-plants. This graphite is composed of contorted and slickensided laminæ, much like those of some bituminous shales and coarse coals; and in these there are occasional small pyritous masses which show hollow carbonaceous fibres, in some cases presenting obscure indications of lateral pores. I regard these indications, however, as uncertain; and it is not as yet fully ascertained that these beds at St. John are on the same geological horizon with the Lower Laurentian of Canada, though they certainly underlie the Primordial series of the Acadian group, and are separated from it by beds having the character of the Huronian.

[I] Acadian Geology, p. 535. In calcified specimens the structures remain in the graphite after decalcification by an acid.

“There is thus no absolute impossibility that distinct organic tissues may be found in the Laurentian graphite, if formed from land-plants, more especially if any plants existed at that time having true woody or vascular tissues; but it cannot with certainty be affirmed that such tissues have been found. It is possible, however, that in the Laurentian period the vegetation of the land may have consisted wholly of cellular plants, as, for example, mosses and lichens; and if so, there would be comparatively little hope of the distinct preservation of their forms or tissues, or of our being able to distinguish the remains of land-plants from those of Algæ.

“We may sum up these facts and considerations in the following statements:—First, that somewhat obscure traces of organic structure can be detected in the Laurentian graphite; secondly, that the general arrangement and microscopic structure of the substance corresponds with that of the carbonaceous and bituminous matters in marine formations of more modern date; thirdly, that if the Laurentian graphite has been derived from vegetable matter, it has only undergone a metamorphosis similar in kind to that which organic matter in metamorphosed sediment of later age has experienced; fourthly, that the association of the graphitic matter with organic limestone, beds of iron ore, and metallic sulphides, greatly strengthens the probability of its vegetable origin; fifthly, that when we consider the immense thickness and extent of the Eozoonal and graphitic limestones and iron ore deposits of the Laurentian, if we admit the organic origin of the limestone and graphite, we must be prepared to believe that the life of that early period, though it may have existed under low forms, was most copiously developed, and that it equalled, perhaps surpassed, in its results, in the way of geological accumulation, that of any subsequent period.”

(D.) Western and other Laurentian Rocks, etc.

In the map of the Laurentian nucleus of America (fig. 4,) I have not inserted the Laurentian rocks believed to exist in the Rocky Mountains and other western ranges. Their distribution is at present uncertain, as well as the date of their elevation. They may indicate an old line of Laurentian fracture or wrinkling, parallel to the west coast, and defining its direction. In the map there should be a patch of Laurentian in the north of Newfoundland, and it should be wider at the west end of lake Superior.

Full details as to the Laurentian rocks of Canada and sectional lists of their beds will be found in the Reports of the Geological Survey, and Dr. Hunt has discussed very fully their chemical characters and metamorphism in his Chemical and Geological Essays. The recent reports of Hitchcock on New Hampshire, and Hayden on the Western Territories, contain some new facts of interest. The former recognises in the White Mountain region a series of gneisses and other altered rocks of Lower Laurentian age, and, resting unconformably on these, others corresponding to the Upper Laurentian; while above the latter are other pre-silurian formations corresponding to the Huronian and probably to the Montalban series of Hunt. These facts confirm Logan’s results in Canada; and Hitchcock finds many reasons to believe in the existence of life at the time of the deposition of these old rocks. Hayden’s report describes granitic and gneissose rocks, probably of Laurentian age, as appearing over great areas in Colorado, Arizona, Utah, and Nevada—showing the existence of this old metamorphic floor over vast regions of Western America.

The metamorphism of these rocks does not imply any change of their constituent elements, or interference with their bedded arrangement. It consists in the alteration of the sediments by merely molecular changes re-arranging their particles so as to render them crystalline, or by chemical reactions producing new combinations of their elements. Experiment shows that the action of heat, pressure, and waters containing alkaline carbonates and silicates, would produce such changes. The amount and character of change would depend on the composition of the sediment, the heat applied, the substances in solution in the water, and the lapse of time. (See Hunt’s Essays, p. 24.)

Plate III.


From a Photo by Weston.

Vincent Brooks, Day & Son, Lith.

WEATHERED SPECIMEN OF EOZOON CANADENSE. (ONE-HALF NATURAL SIZE.)

To face Chap. 3

CHAPTER III.

THE HISTORY OF A DISCOVERY.

It is a trite remark that most discoveries are made, not by one person, but by the joint exertions of many, and that they have their preparations made often long before they actually appear. In this case the stable foundations were laid, years before the discovery of Eozoon, by the careful surveys made by Sir William Logan and his assistants, and the chemical examination of the rocks and minerals by Dr. Sterry Hunt. On the other hand, Dr. Carpenter and others in England were examining the structure of the shells of the humbler inhabitants of the modern ocean, and the manner in which the pores of their skeletons become infiltrated with mineral matter when deposited in the sea-bottom. These laborious and apparently dissimilar branches of scientific inquiry were destined to be united by a series of happy discoveries, made not fortuitously but by painstaking and intelligent observers. The discovery of the most ancient fossil was thus not the chance picking up of a rare and curious specimen. It was not likely to be found in this way; and if so found, it would have remained unnoticed and of no scientific value, but for the accumulated stores of zoological and palæontological knowledge, and the surveys previously made, whereby the age and distribution of the Laurentian rocks and the chemical conditions of their deposition and metamorphism were ascertained.

Fig. 7. Eozoon mineralized by Loganite and Dolomite.

(Collected by Dr. Wilson, of Perth.)

The first specimens of Eozoon ever procured, in so far as known, were collected at Burgess in Ontario by a veteran Canadian mineralogist, Dr. Wilson of Perth, and were sent to Sir William Logan as mineral specimens. Their chief interest at that time lay in the fact that certain laminæ of a dark green mineral present in the specimens were found, on analysis by Dr. Hunt, to be composed of a new hydrous silicate, allied to serpentine, and which he named loganite: one of these specimens is represented in fig. 7. The form of this mineral was not suspected to be of organic origin. Some years after, in 1858, other specimens, differently mineralized with the minerals serpentine and pyroxene, were found by Mr. J. McMullen, an explorer in the service of the Geological Survey, in the limestone of the Grand Calumet on the River Ottawa. These seem to have at once struck Sir W. E. Logan as resembling the Silurian fossils known as Stromatopora, and he showed them to Mr. Billings, the palæontologist of the survey, and to the writer, with this suggestion, confirming it with the sagacious consideration that inasmuch as the Ottawa and Burgess specimens were mineralized by different substances, yet were alike in form, there was little probability that they were merely mineral or concretionary. Mr. Billings was naturally unwilling to risk his reputation in affirming the organic nature of such specimens; and my own suggestion was that they should be sliced, and examined microscopically, and that if fossils, as they presented merely concentric laminæ and no cells, they would probably prove to be protozoa rather than corals. A few slices were accordingly made, but no definite structure could be detected. Nevertheless Sir William Logan took some of the specimens to the meeting of the American Association at Springfield, in 1859, and exhibited them as possibly Laurentian fossils; but the announcement was evidently received with some incredulity. In 1862 they were exhibited by Sir William to some geological friends in London, but he remarks that “few seemed disposed to believe in their organic character, with the exception of my friend Professor Ramsay.” In 1863 the General Report of the Geological Survey, summing up its work to that time, was published, under the name of the Geology of Canada, and in this, at page 49, will be found two figures of one of the Calumet specimens, here reproduced, and which, though unaccompanied with any specific name or technical description, were referred to as probably Laurentian fossils. (Figs. 8 and 9.)

About this time Dr. Hunt happened to mention to me, in connection with a paper on the mineralization of fossils which he was preparing, that he proposed to notice the mode of preservation of certain fossil woods and other things with which I was familiar, and that he would show me the paper in proof, in order that he might have any suggestions that occurred to me. On reading it, I observed, among other things, that he alluded to the supposed Laurentian fossils, under the impression that the organic part was represented by the serpentine or loganite, and that the calcareous matter was the filling of the chambers. I took exception to this, stating that though in the slices before examined no structure was apparent, still my impression was that the calcareous matter was the fossil, and the serpentine or loganite the filling. He said—“In that case, would it not be well to re-examine the specimens, and to try to discover which view is correct?” He mentioned at the same time that Sir William had recently shown him some new and beautiful specimens collected by Mr. Lowe, one of the explorers on the staff of the Survey, from a third locality, at Grenville, on the Ottawa. It was supposed that these might throw further light on the subject; and accordingly Dr. Hunt suggested to Sir William to have additional slices of these new specimens made by Mr. Weston, of the Survey, whose skill as a preparer of these and other fossils has often done good service to science. A few days thereafter, some slices were sent to me, and were at once put under the microscope. I was delighted to find in one of the first specimens examined a beautiful group of tubuli penetrating one of the calcite layers. Here was evidence, not only that the calcite layers represented the true skeleton of the fossil, but also of its affinities with the Foraminifera, whose tubulated supplemental skeleton, as described and figured by Dr. Carpenter, and represented in specimens in my collection presented by him, was evidently of the same type with that preserved in the canals of these ancient fossils. Fig. 10 is an accurate representation of the first seen group of canals penetrated by serpentine.

Fig. 8. Weathered Specimen of Eozoon from the Calumet.

(Collected by Mr. McMullen.)

Life's Dawn on Earth

Подняться наверх