Читать книгу Essays: Scientific, Political, & Speculative (Vol. 1-3) - Spencer Herbert - Страница 9

TRANSCENDENTAL PHYSIOLOGY.

Оглавление

Table of Contents

[First published in The National Review for October, 1857, under the title of "The Ultimate Laws of Physiology". The title "Transcendental Physiology", which the editor did not approve, was restored when the essay was re-published with others in 1857.]

The title Transcendental Anatomy is used to distinguish that division of biological science which treats, not of the structures of individual organisms considered separately, but of the general principles of structure common to vast and varied groups of organisms—the unity of plan discernible throughout multitudinous species, genera, and orders, which differ widely in appearance. And here, under the head of Transcendental Physiology, we purpose putting together sundry laws of development and function which hold not of particular kinds or classes of organisms, but of all organisms: laws, some of which have not, we believe, been hitherto enunciated.

By way of unobtrusively introducing the general reader to biological truths of this class, let us begin by noticing one or two with which he is familiar. Take first, the relation between the activity of an organ and its growth. This is a universal relation. It holds, not only of a bone, a muscle, a nerve, an organ of sense, a mental faculty; but of every gland, every viscus, every element of the body. It is seen, not in man only, but in each animal which affords us adequate opportunity of tracing it. Always providing that the performance of function is not so excessive as to produce disorder, or to exceed the repairing powers either of the system at large or of the particular agencies by which nutriment is brought to the organ—always providing this, it is a law of organized bodies that, other things equal, development varies as function. On this law are based all maxims and methods of right education, intellectual, moral, and physical; and when statesmen are wise enough to see it, this law will be found to underlie all right legislation.

Another truth co-extensive with the organic world, is that of hereditary transmission. It is not, as commonly supposed, that hereditary transmission is exemplified merely in re-appearance of the family peculiarities displayed by immediate or remote progenitors. Nor does the law of hereditary transmission comprehend only such more general facts as that modified plants or animals become the parents of permanent varieties; and that new kinds of potatoes, new breeds of sheep, new races of men, have been thus originated. These are but minor exemplifications of the law. Understood in its entirety, the law is that each plant or animal produces others of like kind with itself: the likeness of kind consisting not so much in the repetition of individual traits as in the assumption of the same general structure. This truth has been made by daily illustration so familiar as nearly to have lost its significance. That wheat produces wheat—that existing oxen are descended from ancestral oxen—that every unfolding organism ultimately takes the form of the class, order, genus, and species from which it sprang; is a fact which, by force of repetition, has assumed in our minds the character of a necessity. It is in this, however, that the law of hereditary transmission is principally displayed; the phenomena commonly named as exemplifying it being quite subordinate manifestations. And the law, as thus understood, is universal. Not forgetting the apparent, but only apparent, exceptions presented by the strange class of phenomena known as "alternate generation," the truth that like produces like is common to all types of organisms.

Let us take next a universal physiological law of a less conspicuous kind. To the ordinary observer, it seems that the multiplication of organisms proceeds in various ways. He sees that the young of the higher animals when born resemble their parents; that birds lay eggs, which they foster and hatch; that fish deposit spawn and leave it. Among plants, he finds that while in some cases new individuals grow from seeds only, in other cases they also grow from tubers; that by certain plants layers are sent out, take root, and develop new individuals; and that many plants can be reproduced from cuttings. Further, in the mould that quickly covers stale food, and the infusoria that soon swarm in water exposed to air and light, he sees a mode of generation which, seeming inexplicable, he is apt to consider "spontaneous." The reader of popular science thinks the modes of reproduction still more various. He learns that whole tribes of creatures multiply by gemmation—by a development from the body of the parent of buds which, after unfolding into the parental form, separate and lead independent lives. Concerning microscopic forms of both animal and vegetal life, he reads that the ordinary mode of multiplication is by spontaneous fission—a splitting up of the original individual into two or more individuals, which by and by severally repeat the process. Still more remarkable are the cases in which, as in the Aphis, an egg gives rise to an imperfect female, from which other imperfect females are born viviparously, grow, and in their turns bear other imperfect females; and so on for eight, ten, or more generations, until finally, perfect males and females are viviparously produced. But now under all these, and many more, modified modes of multiplication, the physiologist finds complete uniformity. The starting-point, not only of every higher animal or plant, but of every clan of organisms which by fission or gemmation have sprung from a single organism, is always a spore, seed, or ovum. The millions of infusoria or of aphides which, by sub-division or gemmation, have proceeded from one individual; the countless plants which have been successively propagated from one original plant by cuttings or tubers; are, in common with the highest creature, primarily descended from a fertilized germ. And in all cases—in the humblest alga as in the oak, in the protozoon as in the mammal—this fertilized germ results from the union of the contents of two cells. Whether, as among the lowest forms of life, these two cells are seemingly identical in nature; or whether, as among higher forms, they are distinguishable into sperm-cell and germ-cell; it remains throughout true that from their combination results the mass out of which is evolved a new organism or new series of organisms. That this law is without exception we are not prepared to say; for in the case of the Aphis certain experiments are thought to imply that under special conditions the descendants of an original individual may continue multiplying for ever, without further fecundation. But we know of no case where it actually is so; for although there are certain plants of which the seeds have never been seen, it is more probable that our observations are in fault than that these plants are exceptions. And until we find undoubted exceptions, the above-stated induction must stand. Here, then, we have another of the truths of Transcendental Physiology: a truth which, so far as we know, transcends all distinctions of genus, order, class, kingdom, and applies to every living thing.

Yet another generalization of like universality expresses the process of organic development. To the ordinary observer there seems no unity in this. No obvious parallelism exists between the unfolding of a plant and the unfolding of an animal. There is no manifest similarity between the development of a mammal, which proceeds without break from its first to its last stage, and that of an insect, which is divided into strongly-marked stages—egg, larva, pupa, imago. Nevertheless it is now an established fact, that all organisms are evolved after one general method. At the outset the germ of every plant or animal is relatively homogeneous; and advance towards maturity is advance towards greater heterogeneity. Each organized thing commences as an almost structureless mass, and reaches its ultimate complexity by the establishment of distinctions upon distinctions—by the divergence of tissues from tissues and organs from organs. Here, then, we have yet another biological law of transcendent generality.

Having thus recognized the scope of Transcendental Physiology as presented in its leading truths, we are prepared for the considerations that are to follow.

And first, returning to the last of the great generalizations above given, let us inquire more nearly how this change from the homogeneous to the heterogeneous is carried on. Usually it is said to result from successive differentiations. This, however, cannot be considered a complete account of the process. During the evolution of an organism there occur, not only separations of parts, but coalescences of parts. There is not only segregation, but aggregation. The heart, at first a simple pulsating blood-vessel, by and by twists upon itself and becomes integrated. The bile-cells constituting the rudimentary liver, do not merely diverge from the surface of the intestine in which they at first form a simple layer; but they simultaneously consolidate into a definite organ. And the gradual concentration seen in these and other cases is a part of the developmental process—a part which, though more or less recognized by Milne-Edwards and others, does not seem to have been included as an essential element in it.

This progressive integration, manifest alike when tracing up the several stages passed through by every embryo, and when ascending from the lower organic forms to the higher, may be most conveniently studied under several heads. Let us consider first what may be called longitudinal integration.

The lower Annulosa—worms, myriapods, &c.—are characterized by the great numbers of segments of which they respectively consist, reaching in some cases to several hundreds; but as we advance to the higher Annulosa—centipedes, crustaceans, insects, spiders—we find these numbers greatly reduced, down to twenty-two, thirteen, and even fewer; and accompanying this there is a shortening or integration of the whole body, reaching its extreme in crabs and spiders. Similarly with the development of an individual crustacean or insect. The thorax of a lobster, which, in the adult, forms, with the head, one compact box containing the viscera, is made up by the union of a number of segments which in the embryo were separable. The thirteen distinct divisions seen in the body of a caterpillar, become further integrated in the butterfly: several segments are consolidated to form the thorax, and the abdominal segments are more aggregated than they originally were. The like truth is seen when we pass to the internal organs. In the lower annulose forms, and in the larvæ of the higher ones, the alimentary canal consists either of a tube that is uniform from end to end, or else bulges into a succession of stomachs, one to each segment; but in the developed forms there is a single well-defined stomach. In the nervous, vascular, and respiratory systems a parallel concentration may be traced. Again, in the development of the Vertebrata we have sundry examples of longitudinal integration. The coalescence of several segmental groups of bones to form the skull is one instance of it. It is further illustrated in the os coccygis, which results from the fusion of a number of caudal vertebræ. And in the consolidation of the sacral vertebræ of a bird it is also well exemplified.

That which we may distinguish as transverse integration, is well illustrated among the Annulosa in the development of the nervous system. Leaving out those simple forms which do not present distinct ganglia, it is to be observed that the lower annulose animals, in common with the larvæ of the higher, are severally characterized by a double chain of ganglia running from end to end of the body; while in the more advanced annulose animals this double chain becomes a single chain. Mr. Newport has described the course of this concentration in insects; and by Rathke it has been traced in crustaceans. In the early stages of the Astacus fluviatilis, or common cray-fish, there is a pair of separate ganglia to each ring. Of the fourteen pairs belonging to the head and thorax, the three pairs in advance of the mouth consolidate into one mass to form the brain, or cephalic ganglion. Meanwhile out of the remainder, the first six pairs severally unite in the median line, while the rest remain more or less separate. Of these six double ganglia thus formed, the anterior four coalesce into one mass; the remaining two coalesce into another mass; and then these two masses coalesce into one. Here we see longitudinal and transverse integration going on simultaneously; and in the highest crustaceans they are both carried still further. The Vertebrata exhibit this transverse integration in the development of the generative system. The lowest of the mammalia—the Monotremata—in common with birds, have oviducts which towards their lower extremities are dilated into cavities severally performing in an imperfect way the function of a uterus. "In the Marsupialia, there is a closer approximation of the two lateral sets of organs on the median line; for the oviducts converge towards one another and meet (without coalescing) on the median line; so that their uterine dilatations are in contact with each other, forming a true 'double uterus.' … As we ascend the series of 'placental' mammals, we find the lateral coalescence becoming gradually more and more complete. … In many of the Rodentia, the uterus still remains completely divided into two lateral halves; whilst in others, these coalesce at their lower portion, forming a rudiment of the true 'body' of the uterus in the Human subject. This part increases at the expense of the lateral 'cornua' in the higher Herbivora and Carnivora; but even in the lower Quadrumana, the uterus is somewhat cleft at its summit."[6] And this process of transverse integration, which is still more striking when observed in its details, is accompanied by parallel though less important changes in the opposite sex. Once more; in the increasing commissural connexion of the cerebral hemispheres, which, though separate in the lower vertebrata, become gradually more united in the higher, we have another instance. And further ones of a different order, but of like general implication, are supplied by the vascular system.

Now it seems to us that the various kinds of integration here exemplified, which are commonly set down as so many independent phenomena, ought to be generalized, and included in the formula describing the process of development. The fact that in an adult crab, many pairs of ganglia originally separate have become fused into a single mass, is a fact only second in significance to the differentiation of its alimentary canal into stomach and intestine. That in the higher Annulosa, a single heart replaces the string of rudimentary hearts constituting the dorsal blood-vessel in the lower Annulosa, (reaching in one species to the number of one hundred and sixty), is a truth as much needing to be comprised in the history of evolution, as is the formation of a respiratory surface by a branched expansion of the skin. A right conception of the genesis of a vertebral column, includes not only the differentiations from which result the chorda dorsalis and the vertebral segments imbedded in it; but quite as much it includes the coalescence of numerous vertebral processes with their respective vertebral bodies. The changes in virtue of which several things become one, demand recognition equally with those in virtue of which one thing becomes several. Evidently, then, the current statement which ascribes the developmental progress to differentiations alone, is incomplete. Adequately to express the facts, we must say that the transition from the homogeneous to the heterogeneous is carried on by differentiations and accompanying integrations.

It may not be amiss here to ask—What is the meaning of these integrations? The evidence seems to show that they are in some way dependent on community of function. The eight segments which coalesce to make the head of a centipede, jointly protect the cephalic ganglion, and afford a solid fulcrum for the jaws, &c. The many bones which unite to form a vertebral skull have like uses. In the consolidation of the several pieces which constitute a mammalian pelvis, and in the anchylosis of from ten to nineteen vertebræ in the sacrum of a bird, we have kindred instances of the integration of parts which transfer the weight of the body to the legs. The more or less extensive fusion of the tibia with the fibula and the radius with the ulna in the ungulated mammals, whose habits require only partial rotations of the limbs, is a fact of like meaning. And all the instances lately given—the concentration of ganglia, the replacement of many pulsating blood-sacs by fewer and finally by one, the fusion of two uteri into a single uterus—have the same implication. Whether, as in some cases, the integration is merely a consequence of the growth which eventually brings into contact adjacent parts performing similar duties; or whether, as in other cases, there is an actual approximation of these parts before their union; or whether, as in yet other cases, the integration is of that indirect kind which arises when, out of a number of like organs, one, or a group, discharges an ever-increasing share of the common function, and so grows while the rest dwindle and disappear;—the general fact remains the same, that there is a tendency to the unification of parts having similar duties.

The tendency, however, acts under limiting conditions; and recognition of them will explain some apparent exceptions. In the human fœtus, as in the lower vertebrata, the eyes are placed one on each side of the head. During evolution they become relatively nearer, and at birth are in front; though they are still, in the European infant as in the adult Mongol, proportionately further apart than they afterwards become. But this approximation shows no signs of further increase. Two reasons suggest themselves. One is that the two eyes have not quite the same function, since they are directed to slightly-different aspects of each object looked at; and, since the resulting binocular vision has an advantage over monocular vision, there results a check upon further approach towards identity of function and unity of structure. The other reason is that the interposed structures do not admit of any nearer approach. For the orbits of the eyes to be brought closer together, would imply a decrease in the olfactory chambers; and as these are probably not larger than is demanded by their present functional activity, no decrease can take place. Again, if we trace up the external organs of smell through fishes,[7] reptiles, ungulate mammals and unguiculate mammals, to man, we perceive a general tendency to coalescence in the median line; and on comparing the savage with the civilized, or the infant with the adult, we see this approach of the nostrils carried furthest in the most perfect of the species. But since the septum which divides them has the function both of an evaporating surface for the lachrymal secretion, and of a ramifying surface for a nerve ancillary to that of smell, it does not disappear entirely: the integration remains incomplete. These and other like instances do not however militate against the hypothesis. They merely show that the tendency is sometimes antagonized by other tendencies. Bearing in mind which qualification, we may say, that as differentiation of parts is connected with difference of function, so there appears to be a connexion between integration of parts and sameness of function.

Closely related to the general truth that the evolution of all organisms is carried on by combined differentiations and integrations, is another general truth, which physiologists appear not to have recognized. When we look at the organic world as a whole, we may observe that, on passing from lower to higher forms, we pass to forms which are not only characterized by a greater differentiation of parts, but are at the same time more completely differentiated from the surrounding medium. This truth may be contemplated under various aspects.

In the first place it is illustrated in structure. The advance from the homogeneous to the heterogeneous itself involves an increasing distinction from the inorganic world. In the lowest Protozoa, as some of the Rhizopods, we have a homogeneity approaching to that of air, water, or earth; and the ascent to organisms of greater and greater complexity of structure, is an ascent to organisms which are in that respect more strongly contrasted with the relatively structureless masses in the environment.

In form again we see the same truth. A general characteristic of inorganic matter is its indefiniteness of form, and this is also a characteristic of the lower organisms, as compared with the higher. Speaking generally, plants are less definite than animals, both in shape and size—admit of greater modifications from variations of position and nutrition. Among animals, the Amœba and its allies are not only almost structureless, but are amorphous; and the irregular form is constantly changing. Of the organisms resulting from the aggregation of amœba-like creatures, we find that while some assume a certain definiteness of form, in their compound shells at least, others, as the Sponges, are irregular. In the Zoophytes and in the Polyzoa, we see compound organisms, most of which have modes of growth not more determinate than those of plants. But among the higher animals, we find not only that the mature shape of each species is quite definite, but that the individuals of each species differ very little in size.

A parallel increase of contrast is seen in chemical composition. With but few exceptions, and those only partial ones, the lowest animal and vegetal forms are inhabitants of the water; and water is almost their sole constituent. Dessicated Protophyta and Protozoa shrink into mere dust; and among the acalephes we find but a few grains of solid matter to a pound of water. The higher aquatic plants, in common with the higher aquatic animals, possessing as they do much greater tenacity of substance, also contain a greater proportion of the organic elements; and so are chemically more unlike their medium. And when we pass to the superior classes of organisms—land plants and land animals—we find that, chemically considered, they have little in common either with the earth on which they stand or the air which surrounds them.

In specific gravity, too, we may note the like. The very simplest forms, in common with the spores and gemmules of the higher ones, are as nearly as may be of the same specific gravity as the water in which they float; and though it cannot be said that among aquatic creatures superior specific gravity is a standard of general superiority, yet we may fairly say that the superior orders of them, when divested of the appliances by which their specific gravity is regulated, differ more from water in their relative weights than do the lower. In terrestrial organisms, the contrast becomes extremely marked. Trees and plants, in common with insects, reptiles, mammals, birds, are all of a specific gravity considerably less than the earth and immensely greater than the air.

We see the law similarly fulfilled in respect of temperature. Plants generate but an extremely small quantity of heat, which is to be detected only by delicate experiments; and practically they may be considered as being in this respect like their environment. Aquatic animals rise very little above the surrounding water in temperature: that of the invertebrata being mostly less than a degree above it, and that of fishes not exceeding it by more than two or three degrees, save in the case of some large red-blooded fishes, as the tunny, which exceed it by nearly ten degrees. Among insects, the range is from two to ten degrees above that of the air: the excess varying according to their activity. The heat of reptiles is from four to fifteen degrees more than that of their medium. While mammals and birds maintain a heat which continues almost unaffected by external variations, and is often greater than that of the air by seventy, eighty, ninety, and even a hundred degrees.

Once more, in greater self-mobility a progressive differentiation is traceable. Dead matter is inert: some form of independent motion is our most general test of life. Passing over the indefinite border-land between the animal and vegetable kingdoms, we may roughly class plants as organisms which, while they exhibit the kind of motion implied in growth, are not only without locomotive power, but in nearly all cases are without the power of moving their parts in relation to one another; and thus are less differentiated from the inorganic world than animals. Though in those microscopic Protophyta and Protozoa inhabiting the water—the spores of algæ, the gemmules of sponges, and the infusoria generally—we see locomotion produced by ciliary action; yet this locomotion, while rapid relatively to their sizes, is absolutely slow. Of the Cœlenterata, a great part are either permanently rooted or habitually stationary, and so have scarcely any self-mobility but that implied in the relative movements of parts; while the rest, of which the common jelly-fish serves as a sample, have mostly but little ability to move themselves through the water. Among the higher aquatic Invertebrata—cuttle-fishes and lobsters, for instance—there is a very considerable power of locomotion; and the aquatic Vertebrata are, considered as a class, much more active in their movements than the other inhabitants of the water. But it is only when we come to air-breathing creatures that we find the vital characteristic of self-mobility manifested in the highest degree. Flying insects, mammals, birds, travel with velocities far exceeding those attained by any of the lower classes of animals; and so are more strongly contrasted with their inert environments.

Thus, on contemplating the various grades of organisms in their ascending order, we find them more and more distinguished from their inanimate media in structure, in form, in chemical composition, in specific gravity, in temperature, in self-mobility. It is true that this generalization does not hold with regularity. Organisms which are in some respects the most strongly contrasted with the inorganic world, are in other respects less contrasted than inferior organisms. As a class, mammals are higher than birds; and yet they are of lower temperature, and have smaller powers of locomotion. The stationary oyster is of higher organization than the free-swimming medusa; and the cold-blooded and less heterogeneous fish is quicker in its movements than the warm-blooded and more heterogeneous sloth. But the admission that the several aspects under which this increasing contrast shows itself bear variable ratios to one another, does not negative the general truth enunciated. Looking at the facts in the mass, it cannot be denied that the successively higher groups of organisms are severally characterized, not only by greater differentiation of parts, but also by greater differentiation from the surrounding medium in sundry other physical attributes. It would seem that this peculiarity has some necessary connexion with superior vital manifestations. One of those lowly gelatinous forms which are some of them so transparent and colourless as to be with difficulty distinguished from the water they float in, is not more like its medium in chemical, mechanical, optical, thermal, and other properties, than it is in the passivity with which it submits to all the actions brought to bear on it; while the mammal does not more widely differ from inanimate things in these properties than it does in the activity with which it meets surrounding changes by compensating changes in itself. Between these two extremes, we see a tolerably constant ratio between these two kinds of contrast. In proportion as an organism is physically like its environment it remains a passive partaker of the changes going on in its environment; while in proportion as it is endowed with powers of counteracting such changes, it exhibits greater unlikeness to its environment.

Thus far we have proceeded inductively, in conformity with established usage; but it seems to us that much may be done in this and other departments of biologic inquiry by pursuing the deductive method. The generalizations at present constituting the science of physiology, both general and special, have been reached a posteriori; but certain fundamental data have now been discovered, starting from which we may reason our way a priori, not only to some of the truths that have been ascertained by observation and experiment, but also to some others. The possibility of such a priori conclusions will be at once recognized on considering some familiar cases.

Chemists have shown that a necessary condition to vital activity in animals is oxidation of certain matters contained in the body either as components or as waste products. The oxygen requisite for this oxidation is contained in the surrounding medium—air or water, as the case may be. If the organism be minute, mere contact of its external surface with the oxygenated medium achieves the requisite oxidation; but if the organism is bulky, and so exposes a surface which is small in proportion to its mass, any considerable oxidation cannot be thus achieved. One of two things is therefore implied. Either this bulky organism, receiving no oxygen but that absorbed through its integument, must possess but little vital activity; or else, if it possesses much vital activity, there must be some extensive ramified surface, internal or external, through which adequate aeration may take place—a respiratory apparatus. That is to say, lungs, or gills, or branchiæ, or their equivalents, are predicable a priori as possessed by all active creatures of any size.

Similarly with respect to nutriment. There are entozoa which, living in the insides of other animals, and being constantly bathed by nutritive fluids, absorb a sufficiency through their outer surfaces; and so have no need of stomachs, and do not possess them. But all other animals, inhabiting media that are not in themselves nutritive, but only contain masses of food here and there, must have appliances by which these masses of food may be utilized. Evidently mere external contact of a solid organism with a solid portion of nutriment, could not result in the absorption of it in any moderate time, if at all. To effect absorption, there must be both a solvent or macerating action, and an extended surface fit for containing and imbibing the dissolved products: there must be a digestive cavity. Thus, given the ordinary conditions of animal life, and the possession of stomachs by all creatures living under these conditions may be deductively known.

Carrying out the train of reasoning still further, we may infer the existence of a vascular system or something equivalent to it, in all creatures of any size and activity. In a comparatively small inert animal, such as the hydra, which consists of little more than a sac having a double wall—an outer layer of cells forming the skin, and an inner layer forming the digestive and absorbent surface—there is no need for a special apparatus to diffuse through the body the aliment taken up; for the body is little more than a wrapper to the food it encloses. But where the bulk is considerable, or where the activity is such as to involve much waste and repair, or where both these characteristics exist, there is a necessity for a system of blood-vessels. It is not enough that there be adequately extensive surfaces for absorption and aeration; for in the absence of any means of conveyance, the absorbed elements can be of little or no use to the organism at large. Evidently there must be channels of communication. When, as in the Medusæ, we find these channels of communication consisting simply of branched canals opening out of the stomach and spreading through the disk, we may know, a priori, that such creatures are comparatively inactive; seeing that the nutritive liquid thus partially distributed throughout their bodies is crude and dilute, and that there is no efficient appliance for keeping it in motion. Conversely, when we meet with a creature of considerable size which displays much vivacity, we may know, a priori, that it must have an apparatus for the unceasing supply of concentrated nutriment, and of oxygen, to every organ—a pulsating vascular system.

It is manifest, then, that setting out from certain known fundamental conditions to vital activity, we may deduce from them sundry of the chief characteristics of organized bodies. Doubtless these known fundamental conditions have been inductively established. But what we wish to show is that, given these inductively-established primary facts in physiology, we may with safety draw certain general deductions from them. And, indeed, the legitimacy of such deductions, though not formally acknowledged, is practically recognized in the convictions of every physiologist, as may be readily proved. Thus, were a physiologist to find a creature exhibiting complex and variously co-ordinated movements, and yet having no nervous system; he would be less astonished at the breach of his empirical generalization that all such creatures have nervous systems, than at the disproof of his unconscious deduction that all creatures exhibiting complex and variously co-ordinated movements must have an "internuncial" apparatus by which the co-ordination may be effected. Or were he to find a creature having blood rapidly circulated and rapidly aerated, but yet showing a low temperature, the proof so afforded that active change of matter is not, as he had inferred from chemical data, the cause of animal heat, would stagger him more than would the exception to a constantly-observed relation. Clearly, then, the a priori method already plays a part in physiological reasoning. If not ostensibly employed as a means of reaching new truths, it is at least privately appealed to for confirmation of truths reached a posteriori.

But the illustrations above given go far to show, that it may to a considerable extent be safely used as an independent instrument of research. The necessities for a nutritive system, a respiratory system, and a vascular system, in all animals of size and vivacity, seem to us legitimately inferable from the conditions to continued vital activity. Given the physical and chemical data, and these structural peculiarities may be deduced with as much certainty as may the hollowness of an iron ball from its power of floating in water.

It is not, of course, asserted that the more special physiological truths can be deductively reached. The argument by no means implies this. Legitimate deduction presupposes adequate data; and in respect to the special phenomena of organic growth, structure, and function, adequate data are unattainable, and will probably ever remain so. It is only in the case of the more general physiological truths, such as those above instanced, where we have something like adequate data, that deductive reasoning becomes possible.

And here is reached the stage to which the foregoing considerations are introductory. We propose now to show that there are certain still more general attributes of organized bodies, which are deducible from certain still more general attributes of things.

In an essay on "Progress: its Law and Cause," elsewhere published,[8] we have endeavoured to show that the transformation of the homogeneous into the heterogeneous, in which all progress, organic or other, essentially consists, is consequent on the production of many effects by one cause—many changes by one force. Having pointed out that this is a law of all things, we proceeded to show deductively that the multiform evolutions of the homogeneous into the heterogeneous—astronomic, geologic, ethnologic, social, &c.—were explicable as consequences. And though in the case of organic evolution, lack of data disabled us from specifically tracing out the progressive complication as due to the multiplication of effects; yet, we found sundry indirect evidences that it was so. Now in so far as this conclusion, that organic evolution results from the decomposition of each expended force into several forces, was inferred from the general law previously pointed out, it was an example of deductive physiology. The particular was concluded from the universal.

We here propose in the first place to show, that there is another general truth closely connected with the above; and in common with it underlying explanations of all progress, and therefore the progress of organisms—a truth which may indeed be considered as taking precedence of it in respect of time, if not in respect of generality. This truth is, that the condition of homogeneity is a condition of unstable equilibrium.

The phrase unstable equilibrium is one used in mechanics to express a balance of forces of such kind, that the interference of any further force, however minute, will destroy the arrangement previously existing, and bring about a different arrangement. Thus, a stick poised on its lower end is in unstable equilibrium: however exactly it may be placed in a perpendicular position, as soon as it is left to itself it begins, at first imperceptibly and then visibly, to lean on one side, and with increasing rapidity falls into another position. Conversely, a stick suspended from its upper end is in stable equilibrium: however much disturbed, it will return to the same position. Our meaning is, then, that the state of homogeneity, like the state of the stick poised on its lower end, is one that cannot be maintained; and that hence results the first step in its gravitation towards the heterogeneous. Let us take a few illustrations.

Of mechanical ones the most familiar is that of the scales. If accurately made and not clogged by dirt or rust, a pair of scales cannot be perfectly balanced: eventually one scale will descend and the other ascend—they will assume a heterogeneous relation. Again, if we sprinkle over the surface of a liquid a number of equal-sized particles, having an attraction for one another, they will, no matter how uniformly distributed, by and by concentrate irregularly into groups. Were it possible to bring a mass of water into a state of perfect homogeneity—a state of complete quiescence, and exactly equal density throughout—yet the radiation of heat from neighbouring bodies, by affecting differently its different parts, would soon produce inequalities of density and consequent currents; and would so render it to that extent heterogeneous. Take a piece of red-hot matter, and however evenly heated it may at first be, it will quickly cease to be so: the exterior, cooling faster than the interior, will become different in temperature from it. And the lapse into heterogeneity of temperature, so obvious in this extreme case, is ever taking place more or less in all cases. The actions of chemical forces supply other illustrations. Expose a fragment of metal to air or water, and in course of time it will be coated with a film of oxide, carbonate, or other compound: its outer parts will become unlike its inner parts. Thus, every homogeneous aggregate of matter tends to lose its balance in some way or other—either mechanically, chemically, thermally or electrically; and the rapidity with which it lapses into a non-homogeneous state is simply a question of time and circumstances. Social bodies illustrate the law with like constancy. Endow the members of a community with equal properties, positions, powers, and they will forthwith begin to slide into inequalities. Be it in a representative assembly, a railway board, or a private partnership, the homogeneity, though it may continue in name, inevitably disappears in reality.

The instability thus variously illustrated becomes still more manifest if we consider its rationale. It is consequent on the fact that the several parts of any homogeneous mass are necessarily exposed to different forces—forces which differ either in their kinds or amounts; and being exposed to different forces they are of necessity differently modified. The relations of outside and inside, and of comparative nearness to neighbouring sources of influence, imply the reception of influences which are unlike in quantity or quality or both; and it follows that unlike changes will be wrought in the parts dissimilarly acted upon. The unstable equilibrium of any homogeneous aggregate can thus be shown both inductively and deductively.

And now let us consider the bearing of this general truth on the evolution of organisms. The germ of a plant or animal is one of these homogeneous aggregates—relatively homogeneous if not absolutely so—whose equilibrium is unstable. But it has not simply the ordinary instability of homogeneous aggregates: it has something more. For it consists of units which are themselves specially characterized by instability. The constituent molecules of organic matter are distinguished by the feebleness of the affinities which hold their component elements together. They are extremely sensitive to heat, light, electricity, and the chemical actions of foreign elements; that is, they are peculiarly liable to be modified by disturbing forces. Hence then it follows, a priori, that a homogeneous aggregate of these unstable molecules will have an excessive tendency to lose its equilibrium. It will have a quite special liability to lapse into a non-homogeneous state. It will rapidly gravitate towards heterogeneity.

Moreover, the process must repeat itself in each of the subordinate groups of organic units which are differentiated by the modifying forces. Each of these subordinate groups, like the original group, must gradually, in obedience to the influences acting on it, lose its balance of parts—must pass from a uniform into a multiform state. And so on continuously.

Thus, starting from the general laws of things, and the known chemical attributes of organic matter, we may conclude deductively that the homogeneous germs of organisms have a peculiar proclivity towards a non-homogeneous state; which may be either the state we call decomposition, or the state we call organization.

At present we have reached a conclusion only of the most general nature. We merely learn that some kind of heterogeneity is inevitable; but as yet there is nothing to tell us what kind. Besides that orderly heterogeneity which distinguishes organisms, there is the disorderly or chaotic heterogeneity, into which a loose mass of inorganic matter lapses; and at present no reason has been given why the homogeneous germ of a plant or animal should not lapse into the disorderly instead of the orderly heterogeneity. But by pursuing still further the line of argument hitherto followed we shall find a reason.

We have seen that the instability of homogeneous aggregates in general, and of organic ones in particular, is consequent on the various ways and degrees in which their constituent parts are exposed to the disturbing forces brought to bear on them: their parts are differently acted upon, and therefore become different. Manifestly, then, a rationale of the special changes which a germ undergoes, must be sought in the particular relations which its several parts bear to each other and to their environment. However it may be masked, we may suspect the fundamental principle of organization to be, that the many like units forming a germ acquire those kinds and degrees of unlikeness which their respective positions entail.

Take a mass of unorganized but organizable matter—either the body of one of the lowest living forms, or the germ of one of the higher. Consider its circumstances. It is immersed in water or air; or it is contained within a parent organism. Wherever placed, however, its outer and inner parts stand differently related to surrounding existences—nutriment, oxygen, and the various stimuli. But this is not all. Whether it lies quiescent at the bottom of the water, whether it moves through the water preserving some definite attitude, or whether it is in the inside of an adult; it equally results that certain parts of its surface are more directly exposed to surrounding agencies than other parts—in some cases more exposed to light, heat, or oxygen, and in others to the maternal tissues and their contents. The destruction of its original equilibrium is therefore certain. It may take place in one of two ways. Either the disturbing forces may be such as to overbalance the affinities of the organic elements, in which case there results that chaotic heterogeneity known as decomposition; or, as is ordinarily the case, such changes are induced as do not destroy the organic compounds, but only modify them: the parts most exposed to the modifying forces being most modified. Hence result those first differentiations which constitute incipient organization. From the point of view thus reached, suppose we look at a few cases: neglecting for the present all consideration of the tendency to assume the inherited type.

Note first what appear to be exceptions, as the Amœba. In this creature and its allies, the substance of the jelly-like body remains throughout life unorganized—undergoes no permanent differentiations. But this fact, which seems directly opposed to our inference, is really one of the most significant evidences of its truth. For what is the peculiarity of the Rhizopods, exemplified by the Amœba? They undergo perpetual and irregular changes of shape—they show no persistent relations of parts. What lately formed a portion of the interior is now protruded, and, as a temporary limb, is attached to some object it happens to touch. What is now a part of the surface will presently be drawn, along with the atom of nutriment sticking to it, into the centre of the mass. Thus there is an unceasing interchange of places; and the relations of inner and outer have no settled existence. But by the hypothesis, it is only in virtue of their unlike positions with respect to modifying forces, that the originally-like units of a living mass become unlike. We must not therefore expect any established differentiation of parts in creatures which exhibit no established differences of position in their parts.

This negative evidence is borne out by abundant positive evidence. When we turn from these ever-changing specks of living jelly to organisms having unchanging distributions of substance, we find differences of tissue corresponding to differences of relative position. In all the higher Protozoa, as also in the Protophyta, we meet with a fundamental differentiation into cell-membrane and cell-contents, answering to that fundamental contrast of conditions implied by the words outside and inside. And on passing from what are roughly classed as unicellular organisms to the lowest of those which consist of aggregated cells, we equally observe the connexion between structural differences and differences of circumstance. In the sponge, permeated throughout by currents of sea-water, the absence of definite organization corresponds with the absence of definite unlikeness of conditions. In the Thalassicolla of Professor Huxley—a transparent, colourless body, found floating passively at the surface of the sea, and consisting essentially of "a mass of cells united by jelly"—there is displayed a rude structure obviously subordinated to the primary relations of centre and surface: in all of its many and important varieties, the parts exhibit a more or less concentric arrangement.

After this primary modification, by which the outer tissues are differentiated from the inner, the next in order of constancy and importance is that by which some part of the outer tissues is differentiated from the rest; and this corresponds with the almost universal fact that some part of the outer tissues is more directly exposed to certain environing influences than the rest. Here, as before, the apparent exceptions are extremely significant. Some of the lowest vegetable organisms, as the Hematococci and Protococci, evenly imbedded in a mass of mucus, or dispersed through the Arctic snow, display no differentiations of surface: the several parts of the surface being subjected to no definite contrasts of conditions. The Thalassicolla above mentioned, unfixed, and rolled about by the waves, presents all its sides successively to the same agencies; and all its sides are alike. A ciliated sphere like the Volvox has no parts of its periphery unlike other parts; and it is not to be expected that it should have; seeing that as it revolves in all directions, it does not, in traversing the water, permanently expose any part to special conditions. But when we come to creatures that are either fixed, or while moving, severally preserve a definite attitude, we no longer find uniformity of surface. The gemmule of a Zoophyte, which during its locomotive stage is distinguishable only into outer and inner tissues, no sooner takes root than its upper end begins to assume a different structure from its lower. The free-swimming embryo of an aquatic annelid, being ovate and not ciliated all over, moves with one end foremost; and its differentiations proceed in conformity with this contrast of circumstances.

The principle thus displayed in the humbler forms of life, is traceable during the development of the higher; though being here soon masked by the assumption of the hereditary type, it cannot be traced far. Thus the "mulberry-mass" into which a fertilized ovum of a vertebrate animal first resolves itself, soon begins to exhibit a difference between the outer and inner parts answering to the difference of circumstances. The peripheral cells, after reaching a more complete development than the central ones, coalesce into a membrane enclosing the rest; and then the cells lying next to these outer ones become aggregated with them, and increase the thickness of the germinal membrane, while the central cells liquefy. Again, one part of the germinal membrane presently becomes distinguishable as the germinal spot; and without asserting that the cause of this is to be found in the unlike relations which the respective parts of the germinal membrane bear to environing influences, it is clear that we have in these unlike relations an element of disturbance tending to destroy the original homogeneity of the germinal membrane. Further, the germinal membrane by and by divides into two layers, internal and external; the one in contact with the liquefied interior part or yelk, the other exposed to the surrounding fluids: this contrast of circumstances being in obvious correspondence with the contrast of structures which follows it. Once more, the subsequent appearance of the vascular layer between these mucous and serous layers, as they have been named, admits of a like interpretation. And in this and the various complications which now begin to show themselves, we may see coming into play that general law of the multiplication of effects flowing from one cause, to which the increase of heterogeneity was elsewhere ascribed.[9]

Confining our remarks, as we do, to the most general facts of development, we think that some light is thus thrown on them. That the unstable equilibrium of a homogeneous germ must be destroyed by the unlike exposure of its several units to surrounding influences, is an a priori conclusion. And it seems also to be an a priori conclusion, that the several units thus differently acted upon, must either be decomposed, or must undergo such modifications of nature as may enable them to live in the respective circumstances they are thrown into: in other words—they must either die or become adapted to their conditions. Indeed, we might infer as much without going through the foregoing train of reasoning. The superficial organic units (be they the outer cells of a "mulberry-mass," or be they the outer molecules of an individual cell) must assume the function which their position necessitates; and assuming this function, must acquire such character as performance of it involves. The layer of organic units lying in contact with the yelk must be those through which the yelk is absorbed; and so must be adapted to the absorbent office. On this condition only does the process of organization appear possible. We might almost say that just as some race of animals, which multiplies and spreads into divers regions of the earth, becomes differentiated into several races through the adaptation of each to its conditions of life; so, the originally homogeneous population of cells arising in a fertilized germ-cell, becomes divided into several populations of cells that grow unlike in virtue of the unlikeness of their circumstances.

Moreover, it is to be remarked in further proof of our position, that it finds its clearest and most abundant illustrations where the conditions of the case are the simplest and most general—where the phenomena are the least involved: we mean in the production of individual cells. The structures which presently arise round nuclei in a blastema, and which have in some way been determined by those nuclei as centres of influence, evidently conform to the law; for the parts of the blastema in contact with the nuclei are differently conditioned from the parts not in contact with them. Again, the formation of a membrane round each of the masses of granules into which the endochrome of an alga-cell breaks up, is an instance of analogous kind. And should the recently-asserted fact that cells may arise round vacuoles in a mass of organizable substance, be confirmed, another good example will be furnished; for such portions of substance as bound these vacant spaces are subject to influences unlike those to which other portions of the substance are subject. If then we can most clearly trace this law of modification in these primordial processes, as well as in those more complex but analogous ones exhibited in the early changes of an ovum, we have strong reason for thinking that the law is fundamental.

But, as already more than once hinted, this principle, understood in the simple form here presented, supplies no key to the detailed phenomena of organic development. It fails entirely to explain generic and specific peculiarities; and leaves us equally in the dark respecting those more important distinctions by which families and orders are marked out. Why two ova, similarly exposed in the same pool, should become the one a fish, and the other a reptile, it cannot tell us. That from two different eggs placed under the same hen, should respectively come forth a duckling and a chicken, is a fact not to be accounted for on the hypothesis above developed. Here we are obliged to fall back upon the unexplained principle of hereditary transmission. The capacity possessed by an unorganized germ of unfolding into a complex adult which repeats ancestral traits in minute details, and that even when it has been placed in conditions unlike those of its ancestors, is a capacity impossible for us to understand. That a microscopic portion of seemingly structureless matter should embody an influence of such kind, that the resulting man will in fifty years after become gouty or insane, is a truth which would be incredible were it not daily illustrated. But though the manner in which hereditary likeness, in all its complications, is conveyed, is a mystery passing comprehension, it is quite conceivable that it is conveyed in subordination to the law of adaptation above explained; and we are not without reasons for thinking that it is so. Various facts show that acquired peculiarities resulting from the adaptation of constitution to conditions, are transmissible to offspring. Such acquired peculiarities consist of differences of structure or composition in one or more of the tissues. That is to say, of the aggregate of similar organic units composing a germ, the group going to the formation of a particular tissue, will take on the special character which the adaptation of that tissue to new circumstances had produced in the parents. We know this to be a general law of organic modifications. Further, it is the only law of organic modifications of which we have any evidence.[10] It is not impossible then that it is the universal law; comprehending not simply those minor modifications which offspring inherit from recent ancestry, but comprehending also those larger modifications distinctive of species, genus, order, class, which they inherit from antecedent races of organisms. And thus it may be that the law of adaptation is the sole law; presiding not only over the differentiation of any race of organisms into several races, but also over the differentiation of the race of organic units composing a germ, into the many races of organic units composing an adult. So understood, the process gone through by every unfolding organism will consist, partly in the direct adaptation of its elements to their several circumstances, and partly in the assumption of characters resulting from analogous adaptations of the elements of all ancestral organisms.

But our argument does not commit us to any such far-reaching speculation as this; which we introduce simply as suggested by it, not involved. All we are here concerned to show, is, that the deductive method aids us in interpreting some of the more general phenomena of development. That all homogeneous aggregates are in unstable equilibrium is a universal truth, from which is deducible the instability of every organic germ. From the known sensitiveness of organic compounds to chemical, thermal, and other disturbing forces, we further infer the unusual instability of every organic germ—a proneness far beyond that of other homogeneous aggregates to lapse into a heterogeneous state. By the same line of reasoning we are led to the additional inference, that the first divisions into which a germ resolves itself, being severally in a state of unstable equilibrium, are similarly prone to undergo further changes; and so on continuously. Moreover, we have found it to be equally an a priori conclusion, that as, in all other cases, the loss of homogeneity is due to the different degrees and kinds of force brought to bear on the different parts; so, in this case too, difference of circumstances is the primary cause of differentiation. Add to which, that as the several changes undergone by the respective parts thus diversely acted upon, are changes which do not destroy their vital activity, they must be changes which bring that vital activity into subordination to the incident forces—they must be adaptations; and the like must be in some sense true of all the subsequent changes. Thus by deductive reasoning we get some insight into the method of organization. However unable we are, and probably ever shall be, to comprehend the way in which a germ is made to take on the special form of its race, we may yet comprehend the general principles which regulate its first modifications; and, remembering the unity of plan so conspicuous throughout nature, we may suspect that these principles are in some way concerned in succeeding modifications.

A controversy now going on among zoologists, opens yet another field for the application of the deductive method. We believe that the question whether there does or does not exist a necessary correlation among the several parts of an organism is determinable a priori.

Cuvier, who first asserted this necessary correlation, professed to base his restorations of extinct animals upon it. Geoffroy St. Hilaire and De Blainville, from different points of view, contested Cuvier's hypothesis; and the discussion, which has much interest as bearing on paleontology, has been recently revived under a somewhat modified form: Professors Huxley and Owen being respectively the assailant and defender of the hypothesis.

Cuvier says—"Comparative anatomy possesses a principle whose just development is sufficient to dissipate all difficulties; it is that of the correlation of forms in organized beings, by means of which every kind of organized being might, strictly speaking, be recognized by a fragment of any of its parts. Every organized being constitutes a whole, a single and complete system, whose parts mutually correspond and concur by their reciprocal reaction to the same definite end. None of these parts can be changed without affecting the others; and consequently each taken separately, indicates and gives all the rest." He then gives illustrations: arguing that the carnivorous form of tooth necessitating a certain action of the jaw, implies a particular form in its condyles; implies also limbs fit for seizing and holding prey; therefore implies claws, a certain structure of the leg-bones, a certain form of shoulder-blade. Summing up he says, that "the claw, the scapula, the condyle, the femur, and all the other bones, taken separately, will give the tooth or one another; and by commencing with any one, he who had a rational conception of the laws of the organic economy, could reconstruct the whole animal."

It will be seen that the method of restoration here contended for, is based on the alleged physiological necessity of the connexion between these several peculiarities. The argument used is, not that a scapula of a certain shape may be recognized as having belonged to a carnivorous mammal because we always find that carnivorous mammals do possess such scapulas; but the argument is that they must possess them, because carnivorous habits would be impossible without them. And in the above quotation Cuvier asserts that the necessary correlation which he considers so obvious in these cases, exists throughout the system: admitting, however, that in consequence of our limited knowledge of physiology we are unable in many cases to trace this necessary correlation, and are obliged to base our conclusions upon observed coexistences, of which we do not understand the reason, but which we find invariable.

Now Professor Huxley has recently shown that, in the first place, this empirical method, which Cuvier introduces as quite subordinate, and to be used only in aid of the rational method, is really the method which Cuvier habitually employed—the so-called rational method remaining practically a dead letter; and, in the second place, he has shown that Cuvier himself has in several places so far admitted the inapplicability of the rational method, as virtually to surrender it as a method. But more than this, Professor Huxley contends that the alleged necessary correlation is not true. Quite admitting the physiological dependence of parts on each other, he denies that it is a dependence of a kind which could not be otherwise. "Thus the teeth of a lion and the stomach of the animal are in such relation that the one is fitted to digest the food which the other can tear, they are physiologically correlated; but we have no reason for affirming this to be a necessary physiological correlation, in the sense that no other could equally fit its possessor for living on recent flesh. The number and form of the teeth might have been quite different from that which we know them to be, and the construction of the stomach might have been greatly altered; and yet the functions of these organs might have been equally well performed."

Thus much is needful to give an idea of the controversy. It is not here our purpose to go more at length into the evidence cited on either side. We simply wish to show that the question may be settled deductively. Before going on to do this, however, let us briefly notice two collateral points.

In his defence of the Cuvierian doctrine, Professor Owen avails himself of the odium theologicum. He attributes to his opponents "the insinuation and masked advocacy of the doctrine subversive of a recognition of the Higher Mind." Now, saying nothing about the questionable propriety of thus prejudging an issue in science, we think this is an unfortunate accusation. What is there in the hypothesis of necessary, as distinguished from actual, correlation of parts, which is particularly in harmony with Theism? Maintenance of the necessity, whether of sequences or of coexistences, is commonly thought rather a derogation from divine power than otherwise. Cuvier says—"None of these parts can be changed without affecting the others; and consequently, each taken separately, indicates and gives all the rest." That is to say, in the nature of things the correlation could not have been otherwise. On the other hand, Professor Huxley says we have no warrant for asserting that the correlation could not have been otherwise; but have not a little reason for thinking that the same physiological ends might have been differently achieved. The one doctrine limits the possibilities of creation; the other denies the implied limit. Which, then, is most open to the charge of covert Atheism?

On the other point we lean to the opinion of Professor Owen. We agree with him in thinking that where a rational correlation (in the highest sense of the term) can be made out, it affords a better basis for deduction than an empirical correlation ascertained only by accumulated observations. Premising that by rational correlation is not meant one in which we can trace, or think we can trace, a design, but one of which the negation is inconceivable (and this is the species of correlation which Cuvier's principle implies); then we hold that our knowledge of the correlation is of a more certain kind than where it is simply inductive. We think that Professor Huxley, in his anxiety to avoid the error of making Thought the measure of Things, does not sufficiently bear in mind the fact, that as our notion of necessity is determined by some absolute uniformity pervading all orders of our experiences, it follows that an organic correlation which cannot be conceived otherwise, is guaranteed by a much wider induction than one ascertained only by the observation of organisms. But the truth is, that there are relatively few organic correlations of which the negation is inconceivable. If we find the skull, vertebræ, ribs, and phalanges of some quadruped as large as an elephant; we may indeed be certain that the legs of this quadruped were of considerable size—much larger than those of a rat; and our reason for conceiving this correlation as necessary, is, that it is based, not only upon our experiences of moving organisms, but upon all our mechanical experiences relative to masses and their supports. But even were there many physiological correlations really of this order, which there are not, there would be danger in pursuing this line of reasoning, in consequence of the liability to include within the class of truly necessary correlations, those which are not such. For instance, there would seem to be a necessary correlation between the eye and the surface of the body: light being needful for vision, it might be supposed that every eye must be external. Nevertheless it is a fact that there are creatures, as the Cirrhipedia, having eyes (not very efficient ones, it may be) deeply imbedded within the body. Again, a necessary correlation might be assumed between the dimensions of the mammalian uterus and those of the pelvis. It would appear impossible that in any species there should exist a well-developed uterus containing a full-sized fœtus, and yet that the arch of the pelvis should be too small to allow the fœtus to pass. And were the only mammal having a very small pelvic arch, a fossil one, it would have been inferred, on the Cuvierian method, that the fœtus must have been born in a rudimentary state; and that the uterus must have been proportionally small. But there happens to be an extant mammal having an undeveloped pelvis—the mole—which presents us with a fact that saves us from this erroneous inference. The young of the mole are not born through the pelvic arch at all; but in front of it! Thus, granting that some quite direct physiological correlations may be necessary, we see that there is great risk of including among them some which are not.

With regard to the great mass of the correlations, however, including all the indirect ones, Professor Huxley seems to us warranted in denying that they are necessary; and we now propose to show deductively the truth of his thesis. Let us begin with an analogy.

Whoever has been through an extensive iron-works, has seen a gigantic pair of shears worked by machinery, and used for cutting in two, bars of iron that are from time to time thrust between its blades. Supposing these blades to be the only visible parts of the apparatus, anyone observing their movements (or rather the movement of one, for the other is commonly fixed), will see from the manner in which the angle increases and decreases, and from the curve described by the moving extremity, that there must be some centre of motion—either a pivot or an external box equivalent to it. This may be regarded as a necessary correlation. Moreover, he might infer that beyond the centre of motion the moving blade was produced into a lever, to which the power was applied; but as another arrangement is just possible, this could not be called anything more than a highly probable correlation. If now he went a step further, and asked how the reciprocal movement was given to the lever, he would perhaps conclude that it was given by a crank. But if he knew anything of mechanics, he would know that it might possibly be given by an eccentric. Or again, he would know that the effect could be achieved by a cam. That is to say, he would see that there was no necessary correlation between the shears and the remoter parts of the apparatus. Take another case. The plate of a printing-press is required to move up and down to the extent of an inch or so; and it must exert its greatest pressure when it reaches the extreme of its downward movement. If now anyone will look over the stock of a printing-press maker, he will see half a dozen different mechanical arrangements by which these ends are achieved; and a machinist would tell him that as many more might readily be invented. If, then, there is no necessary correlation between the special parts of a machine, still less is there between those of an organism.

From a converse point of view the same truth is manifest. Bearing in mind the above analogy, it will be foreseen that an alteration in one part of an organism will not necessarily entail some one specific set of alterations in the other parts. Cuvier says, "None of these parts can be changed without affecting the others; and consequently, each taken separately, indicates and gives all the rest." The first of these propositions may pass, but the second, which it is alleged follows from it, is not true; for it implies that "all the rest" can be severally affected in only one way and degree, whereas they can be affected in many ways and degrees. To show this, we must again have recourse to a mechanical analogy.

If you set a brick on end and thrust it over, you can predict with certainty in what direction it will fall, and what attitude it will assume. If, again setting it up, you put another on the top of it, you can no longer foresee with accuracy the results of an overthrow; and on repeating the experiment, no matter how much care is taken to place the bricks in the same positions, and to apply the same degree of force in the same direction, the effects will on no two occasions be exactly alike. And in proportion as the aggregation is complicated by the addition of new and unlike parts, will the results of any disturbance become more varied and incalculable. The like truth is curiously illustrated by locomotive engines. It is a fact familiar to mechanical engineers and engine-drivers, that out of a number of engines built as accurately as possible to the same pattern, no two will act in just the same manner. Each will have its peculiarities. The play of actions and reactions will so far differ, that under like conditions each will behave in a somewhat different way; and every driver has to learn the idiosyncrasies of his own engine before he can work it to the greatest advantage. In organisms themselves this indefiniteness of mechanical reaction is clearly traceable. Two boys throwing stones will always differ more or less in their attitudes, as will two billiard-players. The familiar fact that each individual has a characteristic gait, illustrates the point still better. The rhythmical motion of the leg is simple, and on the Cuvierian hypothesis, should react on the body in some uniform way. But in consequence of those slight differences of structure which consist with identity of species, no two individuals make exactly similar movements either of the trunk or the arms. There is always a peculiarity recognizable by their friends.

When we pass to disturbing forces of a non-mechanical kind, the same truth becomes still more conspicuous. Expose several persons to a drenching storm; and while one will subsequently feel no appreciable inconvenience, another will have a cough, another a catarrh, another an attack of diarrhœa, another a fit of rheumatism. Vaccinate several children of the same age with the same quantity of virus, applied to the same part, and the symptoms will not be quite alike in any of them, either in kind or intensity; and in some cases the differences will be extreme. The quantity of alcohol which will send one man to sleep, will render another unusually brilliant—will make this maudlin, and that irritable. Opium will produce either drowsiness or wakefulness: so will tobacco.

Now in all these cases—mechanical and other—some force is brought to bear primarily on one part of an organism, and secondarily on the rest; and, according to the doctrine of Cuvier, the rest ought to be affected in a specific way. We find this to be by no means the case. The original change produced in one part does not stand in any necessary correlation with every one of the changes produced in the other parts; nor do these stand in any necessary correlation with one another. The functional alteration which the disturbing force causes in the organ directly acted upon, does not involve some particular set of functional alterations in the other organs; but will be followed by some one out of various sets. And it is a manifest corollary, that any structural alteration which may eventually be produced in the one organ, will not be accompanied by some particular set of structural alterations in the other organs. There will be no necessary correlation of forms.

Thus Paleontology must depend upon the empirical method. A fossil species that was obliged to change its food or habits of life, did not of necessity undergo the particular set of modifications exhibited; but, under some slight change of predisposing causes—as of season or latitude—might have undergone some other set of modifications: the determining circumstance being one which, in the human sense, we call fortuitous.

May we not say then, that the deductive method elucidates this vexed question in physiology; while at the same time our argument collaterally exhibits the limits within which the deductive method is applicable. For while we see that this extremely general question may be satisfactorily dealt with deductively; the conclusion arrived at itself implies that the more special phenomena of organization cannot be so dealt with.

There is yet another method of investigating the general truths of physiology—a method to which physiology already owes one luminous idea, but which is not at present formally recognized as a method. We refer to the comparison of physiological phenomena with social phenomena.

The analogy between individual organisms and the social organism, is one that has from early days occasionally forced itself on the attention of the observant. And though modern science does not countenance those crude ideas of this analogy which have been from time to time expressed since the Greeks flourished; yet it tends to show that there is an analogy, and a remarkable one. While it is becoming clear that there are not those special parallelisms between the constituent parts of a man and those of a nation, which have been thought to exist; it is also becoming clear that the general principles of development and structure displayed in organized bodies are displayed in societies also. The fundamental characteristic both of societies and of living creatures, is, that they consist of mutually-dependent parts; and it would seem that this involves a community of various other characteristics. Those who are acquainted with the broad facts of both physiology and sociology, are beginning to recognize this correspondence not as a plausible fancy, but as a scientific truth. And we are strongly of opinion that it will by and by be seen to hold to an extent which few at present suspect.

Meanwhile, if any such correspondence exists, it is clear that physiology and sociology will more or less interpret each other. Each affords its special facilities for inquiry. Relations of cause and effect clearly traceable in the social organism, may lead to the search for analogous ones in the individual organism; and may so elucidate what might else be inexplicable. Laws of growth and function disclosed by the pure physiologist, may occasionally give us the clue to certain social modifications otherwise difficult to understand. If they can do no more, the two sciences can at least exchange suggestions and confirmations; and this will be no small aid. The conception of "the physiological division of labour," which political economy has already supplied to physiology, is one of no small value. And probably it has others to give.

In support of this opinion, we will now cite cases in which such aid is furnished. And in the first place, let us see whether the facts of social organization do not afford additional support to some of the doctrines set forth in the foregoing parts of this article.

One of the propositions supported by evidence was that in animals the process of development is carried on, not by differentiations only, but by subordinate integrations. Now in the social organism we may see the same duality of process; and further, it is to be observed that the integrations are of the same three kinds. Thus we have integrations which arise from the simple growth of adjacent parts that perform like functions: as, for instance, the coalescence of Manchester with its calico-weaving suburbs. We have other integrations which arise when, out of several places producing a particular commodity, one monopolizes more and more of the business, and leaves the rest to dwindle: witness the growth of the Yorkshire cloth-districts at the expense of those in the west of England; or the absorption by Staffordshire of the pottery-manufacture, and the consequent decay of the establishments that once flourished at Worcester, Derby, and elsewhere. And we have those yet other integrations which result from the actual approximation of the similarly-occupied parts: whence result such facts as the concentration of publishers in Paternoster Row, of lawyers in the Temple and neighbourhood, of corn-merchants about Mark Lane, of civil engineers in Great George Street, of bankers in the centre of the city. Finding thus that in the evolution of the social organism, as in the evolution of individual organisms, there are integrations as well as differentiations, and moreover that these integrations are of the same three orders; we have additional reason for considering these integrations as essential parts of the developmental process, needed to be included in its formula. And further, the circumstance that in the social organism these integrations are determined by community of function, confirms the hypothesis that they are thus determined in the individual organism.

Again, we endeavoured to show deductively, that the contrasts of parts first seen in all unfolding embryos, are consequent upon the contrasted circumstances to which such parts are exposed; that thus, adaptation of constitution to conditions is the principle which determines their primary changes; and that, possibly, if we include under the formula hereditarily-transmitted adaptations, all subsequent differentiations may be similarly determined. Well, we need not long contemplate the facts to see that some of the predominant social differentiations are brought about in an analogous way. As the members of an originally-homogeneous community multiply and spread, the gradual separation into sections which simultaneously takes place, manifestly depends on differences of local circumstances. Those who happen to live near some place chosen, perhaps for its centrality, as one of periodical assemblage, become traders, and a town springs up; those who live dispersed, continue to hunt or cultivate the earth; those who spread to the sea-shore fall into maritime occupations. And each of these classes undergoes modifications of character fitting to its function. Later in the process of social evolution these local adaptations are greatly multiplied. In virtue of differences of soil and climate, the rural inhabitants in different parts of the kingdom, have their occupations partially specialized; and are respectively distinguished as chiefly producing cattle, or sheep, or wheat, or oats, or hops, or cider. People living where coal-fields are discovered become colliers; Cornishmen take to mining because Cornwall is metalliferous; and the iron-manufacture is the dominant industry where ironstone is plentiful. Liverpool has assumed the office of importing cotton, in consequence of its proximity to the district where cotton goods are made; and for analogous reasons Hull has become the chief port at which foreign wools are brought in. Even in the establishment of breweries, of dye-works, of slate-quarries, of brick-yards, we may see the same truth. So that, both in general and in detail, these industrial specializations of the social organism which characterize separate districts, primarily depend on local circumstances. Of the originally-similar units making up the social mass, different groups assume the different functions which their respective positions entail; and become adapted to their conditions. Thus, that which we concluded, a priori, to be the leading cause of organic differentiations, we find, a posteriori, to be the leading cause of social differentiations. Nay further, as we inferred that possibly the embryonic changes which are not thus directly caused, are caused by hereditarily-transmitted adaptations; so, we may actually see that in embryonic societies, such changes as are not due to direct adaptations, are in the main traceable to adaptations originally undergone by the parent society. The colonies founded by distinct nations, while they are alike in exhibiting specializations caused in the way above described, grow unlike in so far as they take on, more or less, the organizations of the nations they sprung from. A French settlement does not develop exactly after the same manner as an English one; and both assume forms different from those which Roman settlements assumed. Now the fact that the differentiation of societies is determined partly by the direct adaptation of their units to local conditions, and partly by the transmitted influence of like adaptations undergone by ancestral societies, tends strongly to enforce the conclusion, otherwise reached, that the differentiation of individual organisms, similarly results from immediate adaptations compounded with ancestral adaptations.

From confirmations thus furnished by sociology to physiology, let us now pass to a suggestion similarly furnished. A factory, or other producing establishment, or a town made up of such establishments, is an agency for elaborating some commodity consumed by society at large; and may be regarded as analogous to a gland or viscus in an individual organism. If we inquire what is the primitive mode in which one of these producing establishments grows up, we find it to be this. A single worker, who himself sells the produce of his labour, is the germ. His business increasing, he employs helpers—his sons or others; and having done this, he becomes a vendor not only of his own handiwork, but of that of others. A further increase of his business compels him to multiply his assistants, and his sale grows so rapid that he is obliged to confine himself to the process of selling: he ceases to be a producer, and becomes simply a channel through which the produce of others is conveyed to the public. Should his prosperity rise yet higher, he finds that he is unable to manage even the sale of his commodities, and has to employ others, probably of his own family, to aid him in selling; so that, to him as a main channel are now added subordinate channels. Moreover, when there grow up in one place, as a Manchester or a Birmingham, many establishments of like kind, this process is carried still further. There arise factors and buyers, who are the channels through which is transmitted the produce of many factories; and we believe that primarily these factors were manufacturers who undertook to dispose of the produce of smaller houses as well as their own, and ultimately became salesmen only. Under a converse aspect, all the stages of this development have been within these few years exemplified in our railway contractors. There are sundry men now living who illustrate the whole process in their own persons—men who were originally navvies, digging and wheeling; who then undertook some small sub-contract, and worked along with those they paid; who presently took larger contracts, and employed foremen; and who now contract for whole railways, and let portions to sub-contractors. That is to say, we have men who were originally workers, but have finally become the main channels out of which diverge secondary channels, which again bifurcate into the subordinate channels, through which flows the money (representing the nutriment) supplied by society to the actual makers of the railway. Now it seems worth inquiring whether this is not the original course followed in the evolution of secreting and excreting organs in an animal. We know that such is the process by which the liver is developed. Out of the group of bile-cells forming the germ of it, some centrally-placed ones, lying next to the intestine, are transformed into ducts through which the secretion of the peripheral bile-cells is poured into the intestine; and as the peripheral bile-cells multiply, there similarly arise secondary ducts emptying themselves into the main ones; tertiary ones into these; and so on. Recent inquiries show that the like is the case with the lungs—that the bronchial tubes are thus formed. But while analogy suggests that this is the original mode in which such organs are developed, it at the same time suggests that this does not necessarily continue to be the mode. For as we find that in the social organism, manufacturing establishments are no longer commonly developed through the series of modifications above described, but now mostly arise by the direct transformation of a number of persons into master, clerks, foremen, workers, &c.; so the approximate method of forming organs, may in some cases be replaced by a direct metamorphosis of the organic units into the destined structure, without any transitional structures being passed through. That there are organs thus formed is an ascertained fact; and the additional question which analogy suggests is, whether the direct method is substituted for the indirect method.

Such parallelisms might be multiplied. And were it possible here to show in detail the close correspondence between the two kinds of organization, our case would be seen to have abundant support. But, as it is, these few illustrations will sufficiently justify the opinion that study of organized bodies may be indirectly furthered by study of the body politic. Hints may be expected, if nothing more. And thus we venture to think that the Inductive Method, usually alone employed by most physiologists, may not only derive important assistance from the Deductive Method, but may further be supplemented by the Sociological Method.

Essays: Scientific, Political, & Speculative (Vol. 1-3)

Подняться наверх