Читать книгу Как мы учимся. Почему мозг учится лучше, чем любая машина… пока - Станислас Деан - Страница 6

Введение
Человек и машина

Оглавление

Сегодня перед человеческим интеллектом встает новая проблема: с недавних пор мы больше не являемся единственными чемпионами по способности учиться. Во всех областях знаний алгоритмы машинного обучения бросают вызов уникальному статусу нашего вида. Благодаря им современные смартфоны умеют распознавать лица и голоса, транскрибировать речь, переводить с одного языка на другой, управлять различными устройствами и даже играть в шахматы или го намного лучше, чем мы. Машинное обучение превратилось в многомиллиардную индустрию, черпающую вдохновение из организации и функционирования нашей собственной нервной системы. Но как работают эти искусственные алгоритмы? Помогут ли их принципы понять, что такое научение? Способны ли они уже сейчас имитировать работу живого мозга или им еще предстоит пройти долгий путь?

Хотя последние достижения в области информационных технологий завораживают, их ограничения очевидны. Классические алгоритмы глубокого обучения копируют лишь малую часть функционирования нашего мозга. По моему убеждению, эта часть соответствует первым стадиям сенсорной обработки, первым двумстам или тремстам миллисекундам, в течение которых наш мозг работает бессознательно. Данный тип обработки никоим образом не следует считать поверхностным: за долю секунды человеческий мозг может распознать лицо или слово, поместить его в контекст, понять и даже интегрировать в небольшое предложение… Проблема в том, что это сугубо восходящий процесс, не предполагающий каких-либо серьезных размышлений. Только на последующих стадиях обработки информации – более медленных и сознательных – наш мозг задействует все свои способности к рассуждению, умозаключению и анализу. Как с точки зрения логики, так и с точки зрения гибкости живой мозг значительно превосходит все современные машины. Даже самые продвинутые компьютерные архитектуры и те уступают человеческому младенцу в способности создавать абстрактные модели мира.

Даже в пределах своей основной специализации – например, в области быстрого распознавания форм – существующие алгоритмы гораздо менее эффективны, чем наш мозг. Современные компьютеры требуют миллионов, если не миллиардов, обучающих попыток. В самом деле, машинное обучение стало чуть ли не синонимом больших данных: в отсутствие гигантских объемов информации алгоритмы практически не способны извлечь абстрактные знания, которые можно перенести на новые ситуации. Другими словами, они не используют данные оптимальным образом.

В этом состязании младенческий мозг одерживает победу без труда: чтобы выучить новое слово, малышам достаточно одного или двух повторений. Их мозг выжимает максимум из минимума данных – умение, которое по-прежнему ускользает от компьютеров. Нейрональные алгоритмы научения умудряются извлечь суть из малейшего наблюдения. Если ученые желают добиться такой же производительности в машинах, им следует черпать вдохновение из механизмов, которые интегрировала в наш мозг сама эволюция. Это может быть внимание, которое позволяет нам отбирать информацию и усиливать релевантные сигналы, или, например, сон – алгоритм, посредством которого наш мозг синтезирует усвоенное в течение дня. Новые машины с такими свойствами уже появились, и их производительность неуклонно растет – в ближайшем будущем они, безусловно, составят серьезную конкуренцию нашему мозгу.

Согласно одной из новых теорий, причина, по которой человеческий мозг до сих пор превосходит машины, заключается в том, что он действует, как ученый-статистик. Постоянно вычисляя вероятности, он оптимизирует свою способность к научению. Судя по всему, в процессе эволюции наш мозг приобрел сложные алгоритмы, которые беспрерывно оценивают его знания и сопряженную с ними неуверенность (неопределенность). Такое систематическое внимание к вероятностям является в математическом смысле наилучшим способом в полной мере использовать каждую единицу инфор- мации4.

Недавние эксперименты подтверждают эту гипотезу. Даже младенцы понимают вероятности: по всей видимости, они с рождения встроены в их нейронные сети. Дети ведут себя как маленькие ученые: их мозг изобилует гипотезами, которые напоминают научные теории и проверяются на опыте. Способность оперировать вероятностями, по большей части бессознательно, вписана в саму логику нашего научения. Она позволяет любому из нас постепенно отвергать ложные гипотезы и сохранять только те теории, которые согласуются с данными. В отличие от других видов животных люди используют это чувство вероятностей для построения научных теорий о внешнем мире. Только мы – представители Homo sapiens – систематически генерируем абстрактные символические мысли и регулярно оцениваем их правдоподобие на основе новых наблюдений.

Инновационные компьютерные алгоритмы, учитывающие этот новый подход к научению, называются «байесовскими» – в честь преподобного Томаса Байеса (1702–1761), который сформулировал отдельные элементы этой теории еще в XVIII веке. Я предполагаю, что байесовские алгоритмы произведут настоящую революцию в машинном обучении: уже сегодня они способны извлекать абстрактную информацию не хуже любого ученого.

Наше путешествие в современную науку о научении состоит из трех частей.

Первая часть под названием «Что такое научение?» начинается с определения того, что значит для человека или животного – и для любого алгоритма или машины – учиться новому. Идея проста: учиться – значит последовательно формировать как в искусственных, так и в естественных нейронных сетях внутреннюю модель внешнего мира. Гуляя по незнакомому городу, я составляю его мысленную карту – миниатюрную модель улиц и переулков. Точно так же ребенок, который учится кататься на велосипеде, формирует подсознательную симуляцию того, как движения ног, нажимающих на педали, и рук, поворачивающих руль, влияют на устойчивость велосипеда. Аналогичным образом компьютерный алгоритм, который учится распознавать лица, собирает шаблонные модели возможных форм глаз, носов, ртов и их комбинаций.

Но как мы создаем правильную ментальную модель? Как мы увидим далее, ум учащегося можно уподобить гигантской машине с миллионами регулируемых параметров; настройки этих параметров в совокупности и определяют то, чему мы научились (например, где скорее всего будут находиться улицы на нашей ментальной карте окрестностей).

В головном мозге параметры – это синапсы, связи между нейронами, сила которых варьируется; в большинстве современных компьютеров параметры – это регулируемые веса или вероятности, определяющие силу каждой приемлемой гипотезы. Таким образом, научение – как в мозге, так и в машинах – требует поиска оптимального сочетания параметров, которые вместе определяют ментальную модель во всех ее подробностях. В этом смысле научение – проблема поиска; чтобы лучше понять, как научение работает в человеческом мозге, необходимо изучить, как алгоритмы обучения работают в современных компьютерах.

Сравнивая компьютерные алгоритмы с алгоритмами мозга in silico[5] и in vivo[6], мы постепенно получим более четкое представление о том, что означает научение на уровне мозга. Конечно, математикам и специалистам в области вычислительных систем не удалось разработать алгоритмы обучения, столь же мощные, как человеческий мозг, – пока. Тем не менее они все больше склоняются к теории оптимального алгоритма обучения, который должна использовать любая система, если она стремится к максимальной эффективности. Согласно этой теории, лучший ученик действует, как ученый, рационально использующий вероятности и статистику. Возникает новая модель: модель мозга как статистика, при которой корковые области мозга обрабатывают данные о вероятностях событий. Данная теория подчеркивает четкое разделение труда между наследственностью и средой: гены создают обширные пространства априорных гипотез, из которых впоследствии среда выбирает те, которые наилучшим образом описывают внешний мир. Иными словами, набор гипотез задан генетически, но их отбор зависит от опыта.

Согласуется ли эта теория с тем, как на самом деле работает мозг? И как научение реализуется в биологических нейронных сетях? Какие изменения происходят в нашем мозге, когда мы приобретаем новую компетенцию? Во второй части книги, «Как учится наш мозг», мы обратимся к психологии и нейробиологии. Особое внимание будет уделено младенцам – подлинным и непревзойденным самообучающимся машинам. Согласно новейшим исследованиям, они действительно ведут себя как юные специалисты по статистике. Их поразительная интуиция в сферах языка, геометрии, чисел и статистики подтверждает: младенцы могут быть чем угодно, но только не «чистым листом», tabula rasa[7]. При рождении детский мозг уже организован, он проецирует гипотезы на внешний мир с самого первого дня. Кроме того, дети обладают значительным запасом пластичности, которая отражается в беспрерывных изменениях синапсов. В пределах этой статистической машины наследственность и среда не противостоят друг другу – напротив, они действуют сообща. Результатом является структурированная, но пластичная система с уникальной способностью к самовосстановлению после травм и переориентации уже существующих нейронных сетей на овладение навыками, не предусмотренными эволюцией, – например, чтением или математикой.

В третьей части книги, «Четыре столпа научения», я подробно расскажу о некоторых хитростях, которые делают наш мозг самым эффективным самообучающимся устройством, известным на сегодняшний день. В значительной степени нашу способность к научению модулируют четыре основных механизма. Первый – это внимание, система нейронных сетей, которые отбирают, усиливают и передают сигналы, считающиеся нами релевантными, тем самым усиливая их воздействие в нашей памяти в сто раз. Второй столп – активное вовлечение: пассивный организм почти ничему не научится, ибо научение требует активного генерирования гипотез, мотивации и любопытства. Третий столп – обратная связь: всякий раз, когда реальность не совпадает с нашими ожиданиями, в нашем мозге распространяются сигналы ошибки. Они корректируют имеющиеся ментальные модели, исключают непригодные гипотезы и стабилизируют наиболее точные. Наконец, четвертый столп – это консолидация: периодически наш мозг компилирует (собирает воедино) то, что он усвоил, и переносит это в долговременную память, тем самым высвобождая нейронные ресурсы для дальнейшего научения. Важную роль в этом процессе консолидации играет повторение. Мозг активен даже во сне; во время сна он в ускоренном темпе воспроизводит свои прошлые состояния и перекодирует знания, приобретенные в течение дня.

Эти четыре столпа универсальны: младенцы, дети и взрослые всех возрастов используют их каждый раз, когда задействуют свою способность к научению. Вот почему все мы должны научиться владеть ими – именно так мы сможем научиться учиться. В заключении мы обсудим практические последствия этих научных открытий. Изменить наши подходы к научению и обучению в школе, дома или на работе вовсе не так сложно, как кажется. Простые рекомендации касательно игр, любознательности, социализации, концентрации и сна помогут еще больше развить то, что и так является величайшим талантом нашего мозга, – способность учиться.

5

In silico (лат. «в кремнии») – термин, обозначающий компьютерное моделирование эксперимента; создан по аналогии с in vivo и in vitro. (Прим. перев.)

6

In vivo (лат. «внутри живого организма», «внутри клетки») – латинский термин, обозначающий проведение экспериментов на живом организме. (Прим. перев.)

7

Cпор о tabula rasa является одним из старейших споров в философии и связан с представлением о том, рождаются люди с уже заложенными в них индивидуальными различиями или нет. (Прим. научн. ред.)

Как мы учимся. Почему мозг учится лучше, чем любая машина… пока

Подняться наверх