Читать книгу Курс «Трубопроводная арматура». Модуль «Полимерные седла поворотной арматуры» - Станислав Львович Горобченко - Страница 4

Раздел 2. Материалы для изготовления уплотнений
2.1. Кратко о полимерах

Оглавление

Полимеры – это вещества, макромолекулы которых состоят из многочисленных элементарных звеньев – мономеров одинаковой структуры. Их молекулярная масса может составлять от 5000 до 1000000 ед. Полимеры состоят из цепочек из отдельных звеньев, что задает гибкость, но она ограничена размерами элементов и жесткостью звеньев.

Сцепление полимеров обеспечивается степенью жесткости связей. Так, основные атомные цепи обладают жесткой ковалентной связью, с энергией связи до 330 кДж/моль. Межмолекулярные цепи по своей физической природе обладают водородной связью на основе притяжения молекул водорода и когезии. Энергия связи составляет от 5 до 40 КДж/моль.

Полимеры построены из одинаковых по структуре звеньев. Сополимеры состоят из разнородных звеньев. Одним из свойств полимерной структуры является стереорегулярность – это свойство правильного расположения звеньев в пространстве. Это свойство определяет повышенные свойства полимеров.


КЛАССИФИКАЦИЯ ПОЛИМЕРОВ

Полимеры делятся:

1. по составу

2. по форме макромолекул

3. по фазовому состоянию

4. по полярности

5. по отношению к нагреву.

По составу полимеры делятся на органические, элементоорганические и неорганические.

Органические полимеры наиболее используемы, их основная цепь образована углеродными атомами (карбоцепные полимеры). В гетерогенных полимерах связь образована кислородом, фосфором и хлором. Кислород придает связи гибкость, фосфор и хлор – огнестойкость, сера – газонепроницаемость, фтор – химическую стойкость

Элементоорганические полимеры – это полимеры, основная цепь которых образована атомами кремния, титана, алюминия с группами СН3, СН6, СН2. Металлы придают полимеру теплостойкость как карбонильные группы – эластичность. В основном используются кремнийорганические полимеры.

Неорганические полимеры – это силикатные стекла, керамика, слюда, асбест и др. Их основу составляют оксиды кремния, алюминия, магния, кальция и др. Внутриатомная связь – ковалентная, цепи между собой образуют ионную связь. Этот вид полимеров обладает высокой плотностью, длительной теплостойкостью, но и высокой хрупкостью. Характерный представитель – силикаты.

Смешанные полимеры – это класс композитов. Характерный представитель – стеклопластик.

По форме линейные полимеры делятся на линейные, разветвленные, плоские, ленточные (лестничные) и пространственные (сетчатые). Виды полимеров по форме приведены ниже, рис.2.1.



Рис. 2.1. Формы линейных полимеров


Линейные полимеры образуют прочную связь вдоль цепи и имеют слабую межмолекулярную связь. Это придает им высокую эластичность, способность размягчаться и затвердевать. Характерный представитель – полиамиды. Виды

Лестничные полимеры имеют более жесткую цепь, что придает им свойство повышенной теплостойкости, жесткости и малой растворимости.

Пространственные полимеры образуются при сшивке макромолекул. Они не плавятся и не растворяются, обладают высокой упругостью. Делятся на редкосетчатые – имеющие высокую упругость (мягкие резины), густосетчатые, имеющие высокую твердость и теплостойкость. К ним относятся большинство конструкционных пластиков. К паркетным полимерам относится графит.

По фазовому состоянию полимеры делятся на аморфные и кристаллические. Для кристаллических полимеров характерно появление надмолекулярных структур.

Аморфные полимеры однофазны, собраны из цепных молекул в пачки, которые состоят из многих рядов макромолекул. Они способны перемещаться.

Глобулы – это свернутые в клубки цепи, они имеют невысокие свойства, для них характерна хрупкость по границам зерен из-за недостаточной связи.

Кристаллические полимеры образуются из гибких регулярных структур при фазовом переходе внутри пачки и формируют пространственные решетки кристаллов.

Образование кристаллической структуры происходит следующим образом:

1. складывание гибких пачек в ленты

2. соединение лент друг с другом с образованием пластин

3. наслоение пластин друга на друга с образованием правильных структур.



Рис. 2.2. Образование полимера полистирола из мономера


Сферолиты образуются при затрудненном образовании объемных кристаллов из меньших структур. Происходит чередование кристалличных и аморфных участков в виде лучей.



Рис. 2.3. Сферолиты с образованием из пластин. Масштаб – несколько мкм.


Свойствами кристаллических структур являются организованность, термодинамическая стабильность, большое время жизни без нагрузки.

Обычно в полимерах встречается двухфазная структура. Кристалличность придает ей жесткость, твердость и теплостойкость. Однако, надмолекулярные структуры при длительном хранении, эксплуатации или переработке подвержены изменениям и распаду.

По полярности полимеры делятся по наличию диполей центров распределения положительного или отрицательного зарядов. Условиями образования полярности являются:

1. наличие полярных связей (-Cl, – F, +OH)

2. несимметрия в структуре по силе связей: C-H < C-N < C-O < C-F< C-Cl.

Неполярные полимеры, как правило, углеводороды, являются диэлектриками и обладают морозостойкостью. Полярные полимеры обладают жесткостью, теплостойкость, но низкой морозостойкостью.

По отношению к нагреву полимеры делятся на термопластичные и термореактивные.

Термопластичные полимеры размягчаются при нагреве, плавятся и затвердевают обратимо. Они имеют линейную или разветвленную структуру.

Термореактивные полимеры сначала линейны и размягчаются. Затвердевают из-за химических реакций с образованием пространственной структуры и остаются твердыми в термостабильном состоянии.


ОСОБЕННОСТИ СВОЙСТВ ПОЛИМЕРНЫХ МАТЕРИАЛОВ

Особенности полимерных материалов

1. неспособность переходить в газовую фазу из-за высокой молекулярной массы

2. полидисперсность – она определяет значительный разброс механических свойств

3. зависимость от структуры и эксплуатационных условий.

Полимеры могут находиться в нескольких основных состояниях:

Стеклообразное – это твердое, аморфное состояние, где колебания атомов происходят без колебания цепей.

Высокоэластичное – обратимое изменение формы при небольших нагрузках, происходит из-за изгиба макромолекул

Вязкотекучее – жидкое состояние с высокой вязкостью, при котором подвижна вся макромолекула. Состояние вязкотекучести определяется по термомеханическим кривым.

Для пространственных полимеров характерно стеклообразное состояние. Для редкосетчатых полимеров характерно стеклообразное и высокоэластичное в вязкотекучем состоянии. Характерным является область упругих деформаций и после превышения предела вынужденной эластичности. При небольших напряжениях происходит перемещение отдельных сегментов макромолекул и их ориентация в направлении действующей силы. Так, в резинах узлы сетки препятствуют перемещению полимерных цепей. Происходит переход в высокоэластичное состояние до химического разложения без вязкотекучести.

Кристаллические полимеры тверды до температуры кристаллизации, но имеют разную жесткость из-за наличия аморфных участков.

Полимеры с плотной сетчатой структурой имеют характеристики кривой деформация – растяжение, соответствующее упругим деформациям с небольшими значениями. Высокоэластичная деформация практически отсутствует. Кристаллические полимеры имеют зоны упругой деформации с образованием шейки разрыва на образце, участок значительной деформации за счет распространения шейки на всю длину образца и участок разрыва.

Для полимеров характерно т.н. ориентационное упрочнение, когда при медленном растяжении в высокоэластичном или вязкотекучем состоянии макромолекулы и надмолекулярная структура ориентируется в силовом поле. При этом усиливается межмолекулярное взаимодействие, повышается температура стеклования, уменьшается температура перехода к хрупкости и повышается прочность. Появляется анизотропность вплоть до расслоения. Прочность может увеличиваться в 2-5 раз в продольном направлении и снижаться на 30-50% в поперечном. Модуль упругости возрастает в 2 раза. Кристаллические участки в полимере улучшают свою структуру с повышением прочности, тогда как аморфные участки дезориентируются.

Релаксационные свойства полимеров – это свойства, зависящие от времени, действия и скорости приложения нагрузки из-за раскручивания и распрямления цепей и перемещения макромолекул. Скорость релаксации составляет до 10 -4 и может продолжаться сутками и месяцами. Релаксационную способность полимеров определяют по релаксации напряжений при неизменном удлинении.

В линейных полимерах релаксация связана с перемещением макромолекул относительно друг друга до снижения внешнего напряжения до нуля. В сетчатых полимерах релаксация чаще всего не происходит до определенного момента, когда нет нарушений связей, и полимер продолжает удерживать приложенное напряжение.

Полимеры склонны к ползучести, когда при снятии нагрузки остается пластическая деформация. У сетчатых полимеров происходит релаксация напряжений до нуля без образования деформационных участков.

Долговечность полимера определяется силой энергии связи в цепи, состоянием структуры, приложенным напряжением и температурой. При повышении приложенного напряжения и температуре долговечность падает и эта зависимость сильнее, чем у металлов.

Старение полимеров – это самопроизвольное необратимое уменьшение технических характеристик со временем. Причиной являются воздействие света, теплоты, кислорода, озона, многократные деформации и влага. Для определения способности противостоять старению проводят испытания: естественное в атмосфере, тепловое при Т<Тпл на 500С до 50% снижения характеристик.

Причиной старения является образование сложных радикалов с деструкцией полимера из-за окисления кислородом или структурирование. Деструкция приводит к размягчению, выделению летучих веществ (каучук). Структурирование, напротив, приводит к увеличению твердости, хрупкости, потери эластичности (полистирол). Тепловое старение наблюдается при температурах 200-5000С и выше с образованием газовой фазы из-за разложения компонентов во всем объеме.

Термостабильны полиэтилен, полифенолы. Они обладают высокой теплотой полимеризации или высокой степенью полярности, как фторполимеры. Устранение склонности к старению достигается добавкой органических стабилизаторов и антиоксидантов (амины, фенолы). Это приводит к значительному увеличению срока службы. Так, для полиэтилена, стабилизированного сажей, можно увеличить срок службы более 5 лет, поливинилхлорида до 10-25 лет.

Радиационная стойкость – способность противостоять ионизации и возбуждению, из-за которых происходит разрыв связей и образование свободных радикалов. Основными вредными проявлениями являются сшивание цепей или деструкция. При сшивании увеличивается молекулярная масса, повышается теплостойкость и механические свойства.

При деструкции происходит снижение молекулярной массы и уменьшение прочности. Деструкция характерна для полипропилена, полиэтилена и полиамида. Наиболее устойчивы к радиации бензолы (полистирол). Устранение вредного влияния радиации достигается введением антирадов – ароматических аминов, устраняющих энергию возбуждения и обеспечивающих ее рассеяние.

Вакуумстойкость полимеров. При вакуумировании возможно ухудшение свойств из-за выделения добавок из материала (пластификаторов, стабилизаторов) и деструкция. К примеру, это может быть деполимеризация. К потере вакуумстойкости склонны полиэтилен, полипропилен, полиамиды. Оценка вакуумстойкости проводится по газопроницаемости, газовыделению и вакуумплотности.

Газопроницаемость – это способность пропускать газ через уплотнитель. На газопроницаемость влияют состав, структура, природа газа, температура. Газопроницаемость меньше у полярных и линейных полимеров, выше у гибких макромолекул, при введении пластификаторов, и в меньшей степени при введении минеральных наполнителей.

Абляция – разрушение материала, сопровождаемое уносом его массы газовым потоком.

Ее характеризуют через абляционную стойкость. Она определяется устойчивостью к механической, тепловой и термоокислительной деструкции. Для линейных полимеров характерна низкая стойкость к деструкции и деполимеризации, для лестничных и сетчатых характерно структурирование и обезуглероживание. Для повышения абляционной стойкости материала, его армируют более теплопроводящими материалами, например, железом.

Адгезия – это слипание разнородных тел из-за межмолекулярного взаимодействия. Это явление используется при нанесении пленок и покрытий. Для полимеров может встречаться и аутогезия – самослипаемость. Ее причинами являются адсорбция, электростатическое притяжение, диффузия макромолекул.


ПЛАСТИЧЕСКИЕ МАССЫ

Пластмассы – массы, получаемые на основе органических полимерных связующих. Они способны при нагреве быть пластическими, а отверждаются при дальнейшем нагреве или охлаждении.


Состав, классификация и свойства пластмасс.

В состав пластических масс входят:

1. Связующие (синтетические смолы, эфиры, целлюлозы) и наполнители – порошкообразные или волокнисты. При пропитке наполнителя связующими и их опрессовывании получается монолитная масса.

2. Наполнители служат для повышения механических свойств, снижения усадки и придания специфических свойств.

3. Пластификаторы повышают эластичность и облегчают обработку.

4. Отвердители – амины

5. Катализаторы – перекисные соединения для ускорения отвержения термореактивных полимеров

6. Ингибиторы предохраняют массы от самопроизвольного отвержения

7. Красители.

Свойства пластмасс определяются составом компонентов, сочетанием компонентов и их количественным соотношением.


Классификация пластмасс.

Пластмассы классифицируют

1. по типу связующего

1.1. термопласты – удобны, усадка менее 1-3%, упруги, нехрупки, способны ориентироваться и иметь ориентационное упрочнение.

1.2. реактопласты – хрупки, усадка до 10-15%, для повышения их свойств вводят усиливающие или пластифицирующие наполнители.


2. По виду наполнителя

2.1. порошковые (карболиты) – наполнителем является древесная мука, графит, тальк

2.2. волокнистые – в качестве волокна используют очесы хлопка или льна, стекловолокно, асбест.

2.3. слоистые – используют листовые наполнители

2.4. газонаполненные – пено-поропласты, где наполнителем является воздух или нейтральные газы.


3. По применению

3.1. силовые – конструкционные, фрикционные и антифрикционные, электроизоляционные

3.2. несиловые – прозрачные, химически стойкие, электроизоляционные, декоративные, уплотнительные.


Особенности пластмасс

Их достоинствами являются:

1. малая плотность 1-2 т/м3

2. низкая теплопроводность 0.1 – 0,3Вт/мК

3. Электроизоляционные свойства

4. химическая стойкость

5. антифрикционность

6. прочность

7. технологичность.

Недостатками являются:

1. низкая теплостойкость

2. высокое тепловое расширение (в 10-30 раз больше, чем у стали)

3. низкая упругость и вязкость

4. склонность к старению


ТЕРМОПЛАСТИЧЕСКИЕ МАССЫ

Термопласты – полимеры линейной или разветвленной структуры, иногда с пластификатором. Свойства – Траб – обычно не выше 60-700С, теплостойкие до 150-2500С, термостойкость с жесткими цепям и циклическими структурами – до 400 – 6000С.

Особенности эксплуатации – при эксплуатации происходит снижение прочности и вынужденная эластичность при длительном статическом нагружении. – повышение хрупкости с ростом скорости деформации. Прочность – 10-100МПа, модуль упругости 1,8-3,5х103 МПа. Хорошо сопротивляются усталости сигма 0,2-0,3 от предела прочности.

Виды термопластов – полярные и неполярные. Неполярные – полиэтилен, полипропилен, полистирол, фторопласт 4. Полярные термопласты – фторопласт 3, ПВХ, полиамиды, полиуретаны, полиэтилентерефталаты, поликарбонаты, полиакрилат, пентапласты, полиформальдегиды.


Термостойкие пластики

Термостойкость обеспечивается за счет введения фениленовых звеньев, что обеспечивает работоспособность при 4000С и при замене гибких звеньев на жесткие гетероциклические, что повышает Траб до 6000С. Виды термостойких пластиков: ароматические полиамиды, полифениленоксид, полисульфоны, гетероциклические полиимиды.


Термопласты с наполнителями

Связующим является полимерная основа. Наполнители – стекловолокно, асбест, органические волокно, углеродные волокна и пр. Волокнистые наполнители образуют каркас и упрочняют материал. Промышленное использование имеют полиамиды и поликарбонаты, наполненные рубленным стекловолокном. Это повышает прочность до 90-149 МПа, обеспечивает повышенное сопротивление усталости и износу при Тисп 60-1800С.

Перспективны термопласты с синтетическим наполнителем – пропиленом, капроном, лавсаном, винолом. При близкой химической природе и типе связей обеспечивается совместная работа на упрочнение и рост длительной прочности в десятки раз.

Слоистые термопласты – в них используются ткани из различных волокон. Пример: полиамид, армированный стеклотканью, имеет предел прочности 430 МПа, предел текучести 280 МПа, ударную вязкость а = 250 КДж/м2, Тисп = 2200С.


ТЕРМОРЕАКТИВНЫЕ ПЛАСТМАССЫ

Связующими являются термореактивные смолы с пластификаторами, отвердителями, катализаторами, замедлителями и пр. Смола склеивает слои наполнителя, что необходимо для прочности при расслаивании. Адгезивность обеспечивается полярностью.

Виды связующих – фенолформальдегидные, кремнийорганические, эпоксидные смолы, имеющие наибольшею адгезию. Это дает возможность использовать армированные пластики. Они обладают высокой прочностью.

Теплостойкость кремнийорганических смол 260-3700С, фенолформальдегидных до 2600С, эпоксидных до 2000С.

Для крупногабаритных деталей используют непредельные полиэфиры и эпоксидные смолы. Они твердеют не только при повышенной, но и нормальной температуре без усадки и выделения вредных веществ.

Используются наполнители – порошковые, волокнистые, слоистые. В качестве порошковых используют органические (древесная мука), минеральные (молотый кварц, асбест, слюда, графит). Порошковые пластмассы отличают изотропность, низкая прочность и вязкость. Их применяют в несиловых конструкциях. Пластмассы с минеральными наполнителями имеют хорошую водостойкость, химическую стойкость, электроизоляционность.


ГАЗОНАПОЛНЕННЫЕ ПЛАСТМАССЫ

Газонаполненные пластмассы – это гетерогенные системы, состоящие из твердой и газообразной фаз. Структура состоит из связующих, образующих стенки пор или ячеек с распределенной в них газовой фазой. Основными свойствами являются малая масса и высокие тепло и звукоизолирующие свойства.

Основные виды газонаполненных пластмасс – пенопласты, поропласты, сотопласты.

Пенопласты. В них ячеистая структура представлена газообразным наполнителем и изолирована друг от друга тонкими слоями полимерного связующего. Свойства: плавучесть, термоизоляционность, невысокая прочность. Используются пенополистирол ПС с Тисп до +-600С, фенолкаучуковые ФК Е120-1600С, пенополиэпоксиды и др.

Поропласты – губчатые материалы с открытопористой структурой, где включения газа свободно сообщаются между собой и атмосферой. Применяются для водопоглощения и пр.

Сотопласты – тонколистовые материалы в виде гофра, склеиваются в виде пчелиных сот. В качестве материала в настоящее время используются ткани.


ЭКОНОМИЧЕСКАЯ ЭФФЕКТИВНОСТЬ ПРИМЕНЕНИЯ ПЛАСТМАСС

1. снижение материалоемкости за счет малой массы в 4-5 раз

2. снижение трудоемкости вместо литья, ковки и резания только формообразование – в 4-5 раз, например, вместо 30-50 операций производится только одна – литье.

3. снижение капиталовложений на оборудование и инвентарь – в 4-6 раз.

4. себестоимость продукции уменьшается в 2-3 раза, дешевле цветных металлов в 4-9 раз, дешевле черных металлов в 2-6 раз.

Курс «Трубопроводная арматура». Модуль «Полимерные седла поворотной арматуры»

Подняться наверх