Читать книгу Krótka historia czasu - Stephen Hawking - Страница 6

Rozdział 2
Czas i przestrzeń

Оглавление

NASZA OBECNA WIEDZA O RUCHU CIAŁ wywodzi się od koncepcji Galileusza i Newtona. Przedtem ludzie wierzyli Arystotelesowi, który twierdził, że naturalnym stanem ciała jest spoczynek i że porusza się ono tylko pod wpływem siły lub pchnięcia. Wynikało stąd, że ciężkie ciała powinny spadać szybciej niż lekkie, ponieważ są mocniej przyciągane w kierunku Ziemi.

Zgodnie z arystotelesowską tradycją uważano, że prawa rządzące wszechświatem można odkryć apriorycznie: doświadczalnego sprawdzenia teorii nie uważano za rzecz konieczną. Wobec tego nikt przed Galileuszem nie zadał sobie trudu, by sprawdzić, czy ciała o różnym ciężarze rzeczywiście spadają z różnymi prędkościami. Tradycja głosi, iż Galileusz wykazał fałszywość poglądów Arystotelesa, zrzucając ciężarki z pochyłej wieży w Pizie. Opowieść ta raczej na pewno nie odpowiada prawdzie, ale Galileusz wykonał doświadczenie równoważne; badał toczenie się kulek po pochyłej, gładkiej powierzchni. Takie doświadczenie jest podobne do badania pionowego spadku, ale obserwacje są łatwiejsze ze względu na mniejsze prędkości ciał. Pomiary Galileusza wykazały, że prędkość wszystkich ciał wzrasta w identyczny sposób, niezależnie od ich ciężaru. Na przykład, klocek zsuwający się bez tarcia po płaszczyźnie opadającej o jeden metr na każde 10 metrów ma prędkość jednego metra na sekundę po pierwszej sekundzie, dwóch metrów na sekundę po drugiej i tak dalej, zupełnie niezależnie od swego ciężaru. Oczywiście, ołowiany ciężarek spada szybciej niż piórko, ale tylko dlatego, że piórko jest hamowane przez opór powietrza. Dwa ciała, na których ruch opór powietrza nie ma w zasadzie wpływu, jak na przykład dwa różne ciężarki ołowiane, spadają w tym samym tempie.

Pomiary Galileusza posłużyły Newtonowi za podstawę jego praw ruchu. W doświadczeniu Galileusza na kulkę staczającą się po równi pochyłej działała stale ta sama siła (jej ciężar), a rezultatem był jednostajny wzrost jej prędkości. Wynikało stąd, że rzeczywistym efektem działania siły jest zawsze zmiana prędkości, a nie po prostu wprawienie ciała w ruch, jak uważano przedtem. Można było z tego również wywnioskować, że ciało, na które nie działa żadna siła, porusza się po prostej ze stałą szybkością. Tę regułę po raz pierwszy sformułował explicite Newton w dziele Principia mathematica, opublikowanym w 1687 roku; jest ona znana jako pierwsze prawo Newtona. Co dzieje się z ciałem, gdy działa na nie jakaś siła, określa drugie prawo Newtona. Zgodnie z nim ciało zmienia swoją prędkość, czyli przyśpiesza, w tempie proporcjonalnym do działającej siły. (Na przykład, przyśpieszenie jest dwukrotnie większe, jeśli działa dwukrotnie większa siła). Przyśpieszenie jest również tym mniejsze, im większa jest masa ciała, czyli ilość materii. (Ta sama siła, działając na ciało o dwukrotnie większej masie, powoduje o połowę mniejsze przyśpieszenie). Znany przykład stanowi tu ruch samochodu: im mocniejszy jest silnik, tym większe przyśpieszenie, ale im cięższy samochód, tym przyśpieszenie jest mniejsze, jeżeli motor jest ten sam.

Oprócz praw ruchu Newton odkrył również prawo opisujące siłę ciążenia. Według niego każde ciało przyciąga każde inne ciało z siłą proporcjonalną do mas obu ciał. Tak więc siła działająca między dwoma ciałami powiększy się dwukrotnie, jeśli podwoimy masę jednego z nich (nazwijmy je A). Tego należało oczekiwać, ponieważ nowe ciało A można uważać za utworzone z dwóch ciał o masach równych początkowej masie ciała A. Każde z nich przyciąga ciało B z taką siłą jak pierwotnie, a zatem całkowita siła działająca między AB będzie dwukrotnie większa niż początkowo. Jeżeli zaś, powiedzmy, podwoimy masę jednego ciała i potroimy masę drugiego, to siła działająca między nimi wzrośnie sześciokrotnie. Łatwo teraz zrozumieć, czemu wszystkie ciała spadają z taką samą prędkością; na ciało o dwukrotnie większym ciężarze działa dwukrotnie większa siła przyciągająca je ku Ziemi, ale ma ono też dwukrotnie większą masę. Zgodnie z drugim prawem Newtona oba efekty się znoszą i przyśpieszenie jest zawsze takie samo.

Prawo grawitacji Newtona mówi nam również, że siła ciążenia jest tym słabsza, im większa jest odległość między ciałami. Zgodnie z nim, siła przyciągania zmniejsza się czterokrotnie, gdy odległość wzrasta dwukrotnie. Opierając się na tym prawie, można przewidzieć orbity Ziemi, Księżyca i wszystkich planet z wielką dokładnością. Gdyby siła ciążenia malała szybciej wraz ze wzrostem odległości, to orbity planet nie byłyby elipsami – planety spadałyby na Słońce po torze spiralnym. Gdyby malała wolniej, siły przyciągania pochodzące od odległych gwiazd przeważyłyby nad przyciąganiem Ziemi.

Zasadnicza różnica między poglądami Arystotelesa z jednej strony a Newtona i Galileusza z drugiej polega na tym, że Arystoteles wierzył w wyróżniony stan spoczynku, w jakim znajdowałoby się każde ciało, gdyby nie działała nań żadna siła. W szczególności uważał, iż Ziemia spoczywa. Jednak zgodnie z prawami Newtona żaden wyróżniony stan spoczynku nie istnieje. Można powiedzieć, że ciało A spoczywa, a ciało B porusza się względem niego ze stałą prędkością, ale też równie dobrze powiedzieć można, że spoczywa ciało B, a porusza się ciało A. Na przykład, pomijając wirowanie Ziemi i jej ruch wokół Słońca, można powiedzieć, że Ziemia spoczywa, a pewien pociąg porusza się na północ z prędkością 150 km na godzinę, lub odwrotnie, że pociąg spoczywa, a Ziemia porusza się na południe z tą samą prędkością. Badając eksperymentalnie ruch ciał w pociągu, stwierdzilibyśmy poprawność wszystkich praw Newtona. Na przykład, grając w ping-ponga w pociągu zauważylibyśmy, że piłeczka porusza się tak samo zgodnie z prawem Newtona jak piłeczka, którą gralibyśmy na stole ustawionym obok torów. Nie ma zatem żadnego sposobu, aby stwierdzić, czy porusza się pociąg czy też Ziemia.

Nieistnienie stanu absolutnego spoczynku oznacza, że nie można stwierdzić, czy dwa zdarzenia, które miały miejsce w różnym czasie, zaszły w tym samym miejscu w przestrzeni. Na przykład, pasażer pociągu widzi, że piłeczka pingpongowa podskakuje w górę i w dół w pociągu, uderzając dwa razy w to samo miejsce w odstępie jednej sekundy. Ktoś, kto obserwuje piłeczkę, stojąc na peronie, stwierdzi, że dwa podskoki zdarzyły się w miejscach oddalonych od siebie o około czterdzieści metrów, ponieważ taki mniej więcej dystans pokona pociąg w czasie jednej sekundy. Z nieistnienia absolutnego spoczynku wynika więc, że wbrew przekonaniu Arystotelesa niemożliwe jest przypisanie zdarzeniom absolutnego położenia w przestrzeni. Miejsce zdarzeń i odległość między nimi są różne dla kogoś jadącego pociągiem i kogoś innego, stojącego na peronie, i nie ma żadnych uzasadnionych powodów, by uznać obserwacje jednej z tych osób za prawdziwsze od obserwacji drugiej.

Newton był bardzo zmartwiony z powodu nieistnienia absolutnego położenia zdarzeń lub też nieistnienia absolutnej przestrzeni, jak to wtedy nazywano, ponieważ nie zgadzało się to z jego koncepcją absolutnego Boga. W istocie rzeczy odmówił on przyjęcia do wiadomości braku absolutnej przestrzeni, choć była to konsekwencja jego praw ruchu. Za tę irracjonalną postawę krytykowało go ostro wielu ludzi, spośród których warto wymienić biskupa Berkeleya, filozofa przekonanego, że wszystkie przedmioty materialne oraz przestrzeń i czas są iluzją. Kiedy sławny doktor Johnson usłyszał o poglądach Berkeleya, wykrzyknął: „Tak je obalam!” i uderzył stopą w pobliski kamień.

I Newton, i Arystoteles wierzyli w istnienie absolutnego czasu, to znaczy wierzyli oni, że można bez żadnych dowolności zmierzyć odstęp czasu między dwoma zdarzeniami i wynik będzie identyczny, niezależnie od tego, kto wykonał pomiar, pod warunkiem, że używał dobrego zegara. Czas był według nich kompletnie oddzielony i niezależny od przestrzeni. Taki pogląd większość ludzi uważa za oczywisty i zgodny ze zdrowym rozsądkiem. Mimo to musieliśmy zmienić poglądy na czas i przestrzeń. Chociaż nasze zdroworozsądkowe pojęcia dobrze pasują do opisu ruchu przedmiotów poruszających się względnie powoli – takich jak jabłka i planety – zawodzą jednak całkowicie, gdy próbujemy ich używać do opisu ruchu ciał poruszających się z prędkością bliską prędkości światła.

Światło porusza się z ogromną, ale skończoną prędkością – ten fakt odkrył w 1676 roku duński astronom Ole Christensen Roemer. Zaobserwował on, że księżyce Jowisza nie chowają się za nim w równych odstępach czasu, jak można by oczekiwać, gdyby okrążały go w równym tempie. W trakcie ruchu Ziemi i Jowisza wokół Słońca zmienia się odległość między nimi. Roemer zauważył, że zaćmienia księżyców są opóźnione tym bardziej, im większa była odległość od Ziemi do Jowisza. Twierdził, że dzieje się tak, ponieważ światło księżyców potrzebowało więcej czasu, aby dotrzeć do Ziemi, gdy znajdowała się ona dalej od nich. Pomiary zmian odległości między Ziemią a Jowiszem, jakich dokonał Roemer, nie były jednak bardzo dokładne i dlatego wyliczona przezeń prędkość światła – 200 tys. km/s – była mniejsza niż dziś przyjmowana wartość 300 tys. km/s. Niemniej jednak Roemer nie tylko wykazał, że światło porusza się ze skończoną prędkością, ale również zmierzył ją, co w sumie ocenić należy jako wspaniały sukces. Zasługuje on na uwagę tym bardziej, że Roemer osiągnął go jedenaście lat przed ukazaniem się Principia mathematica Newtona.

Na poprawną teorię rozchodzenia się światła trzeba było czekać aż do 1865 roku, kiedy to brytyjski fizyk James Clerk Maxwell zdołał połączyć cząstkowe teorie stosowane przedtem do opisu sił elektryczności i magnetyzmu. Z równań Maxwella wynika istnienie falowych zaburzeń pola elektromagnetycznego, które powinny rozprzestrzeniać się ze stałą prędkością, podobnie jak fale na powierzchni stawu. Jeśli długość takich fal (to znaczy odległość między dwoma kolejnymi grzbietami fal) wynosi metr lub więcej, nazywamy je falami radiowymi. Fale o mniejszej długości nazywamy mikrofalami (parę centymetrów) lub falami podczerwonymi (więcej niż dziesięciotysięczna część centymetra). Światło widzialne to fala elektromagnetyczna o długości pomiędzy czterdziestoma a osiemdziesięcioma milionowymi częściami centymetra. Jeszcze krótsze fale nazywamy ultrafioletowymi, promieniami Roentgena, promieniami gamma.

Z teorii Maxwella wynikało, że światło porusza się ze stałą prędkością. Ale skoro teoria Newtona wyeliminowała pojęcie absolutnego spoczynku, to mówiąc, iż światło porusza się ze stałą prędkością, należało koniecznie powiedzieć, względem czego ta prędkość ma być mierzona. Wobec tego fizycy zasugerowali istnienie pewnej specjalnej substancji zwanej „eterem”, obecnej wszędzie, nawet w „pustej” przestrzeni. Fale świetlne miały poruszać się w eterze, tak jak fale dźwiękowe poruszają się w powietrzu, prędkość ich zatem należało mierzyć względem eteru. Różni obserwatorzy, poruszający się względem eteru, powinni postrzegać światło biegnące ku nim z różną prędkością, ale prędkość światła względem eteru byłaby stała. W szczególności, skoro Ziemia w swym ruchu orbitalnym wokół Słońca porusza się względem eteru, to prędkość światła mierzona w kierunku ruchu Ziemi przez eter (kiedy poruszamy się w kierunku źródła światła) powinna być większa niż prędkość światła mierzona w kierunku prostopadłym do kierunku ruchu. W 1887 roku Albert Michelson (który później został pierwszym amerykańskim laureatem Nagrody Nobla w dziedzinie fizyki) i Edward Morley przeprowadzili bardzo staranny eksperyment w Case School of Applied Science w Cleveland. W doświadczeniu tym porównywali oni prędkość światła biegnącego w kierunku ruchu Ziemi z prędkością światła biegnącego w kierunku prostopadłym do tego kierunku. Ku swemu wielkiemu zdziwieniu, stwierdzili, że są one równe!

Między rokiem 1887 a 1905 podjęto wiele prób wyjaśnienia wyniku doświadczenia Michelsona i Morleya. Spośród nich należy wyróżnić prace holenderskiego fizyka Hendrika Lorentza, który próbował wyjaśnić rezultat eksperymentu, zakładając, że ciała poruszające się względem eteru kurczą się w kierunku ruchu, a zegary w takim ruchu zwalniają bieg. Tymczasem w słynnej pracy opublikowanej w 1905 roku Albert Einstein, nie znany dotąd urzędnik szwajcarskiego biura patentowego, wykazał, że cała idea eteru jest niepotrzebna, jeśli tylko porzuci się również ideę absolutnego czasu. Parę tygodni później z podobną sugestią wystąpił znany francuski matematyk Henri Poincaré. Argumenty Einsteina były jednak bliższe fizyce niż wywody Poincarégo, który uważał cały problem za zagadnienie czysto matematyczne. Dlatego za twórcę nowej teorii uważa się Einsteina, a wkład Poincarégo jest upamiętniony przez połączenie jego nazwiska z jednym z ważnych jej elementów.

Nowa teoria została nazwana teorią względności. Jej zasadniczy postulat brzmi: prawa fizyki są takie same dla wszystkich swobodnie poruszających się obserwatorów, niezależnie od ich prędkości. Było to prawdą dla praw ruchu Newtona, ale teraz wymóg ten został rozciągnięty i na teorię Maxwella, i na prędkość światła: wszyscy obserwatorzy mierząc prędkość światła, powinni otrzymać ten sam wynik, niezależnie od tego, jak szybko sami się poruszają. Ten prosty pomysł niesie nadzwyczaj ważne konsekwencje, z których najlepiej znana jest zapewne równoważność masy i energii, wyrażona słynnym wzorem Einsteina E = mc2 (gdzie E oznacza energię, m – masę, zaś c – prędkość światła), oraz twierdzenie, że nic nie może poruszać się z prędkością większą niż prędkość światła. Z równoważności energii i masy wynika bowiem, że energia związana z ruchem ciała wnosi wkład do jego masy, innymi słowy, energia ta utrudnia wzrost prędkości ciała. Ten efekt staje się rzeczywiście istotny dopiero wtedy, gdy obiekt porusza się z prędkością bliską prędkości światła. Na przykład, gdy ciało porusza się z prędkością równą 10% prędkości światła, jego masa wzrasta tylko o 0,5%, ale przy prędkości równej 90% prędkości światła masa staje się już przeszło dwukrotnie większa. W miarę zbliżania się prędkości ciała do prędkości światła jego masa wzrasta coraz szybciej, potrzeba zatem coraz więcej energii, by zwiększyć jego prędkość jeszcze bardziej. W rzeczywistości ciało to nigdy nie osiągnie prędkości światła, gdyż jego masa byłaby wtedy nieskończona, a z równoważności masy i energii wynika, że potrzebna byłaby wtedy i nieskończona energia. Dlatego wedle teorii względności wszystkie zwyczajne ciała zawsze poruszają się z prędkością mniejszą niż prędkość światła. Tylko światło i inne fale, z którymi związana jest zerowa masa, mogą poruszać się z prędkością światła.

Teoria względności spowodowała rewolucję w naszych pojęciach czasu i przestrzeni. Według teorii Newtona różni obserwatorzy mierzący czas przelotu sygnału świetlnego z jednego punktu do drugiego otrzymują identyczne wyniki (ponieważ czas jest absolutny), ale nie zawsze zgodzą się co do tego, jak długą drogę przebyło światło (gdyż przestrzeń nie jest absolutna). Ponieważ prędkość światła równa się po prostu drodze podzielonej przez czas, to różni obserwatorzy otrzymają różne prędkości światła. Zgodnie z teorią względności natomiast, wszyscy obserwatorzy muszą otrzymać taką samą prędkość światła. Ponieważ w dalszym ciągu nie zgadzają się między sobą co do tego, jaką drogę światło przebyło, to nie mogą uzgodnić, ile to zajęło czasu. (Potrzebny czas równa się drodze, jaką przebyło światło – co do której obserwatorzy się nie zgadzają – podzielonej przez taką samą dla wszystkich prędkość światła). Innymi słowy, teoria względności wyeliminowała ostatecznie ideę absolutnego czasu. Okazało się, że każdy obserwator musi posiadać swoją własną miarę czasu, wyznaczoną przez niesiony przez niego zegar, a identyczne zegary niesione przez różnych obserwatorów nie muszą się zgadzać.

Każdy obserwator może użyć radaru, by wysyłając sygnał świetlny lub fale radiowe, określić, gdzie i kiedy dane wydarzenie miało miejsce. Część wysłanego sygnału odbija się z powrotem w kierunku obserwatora, który mierzy czas odbioru echa. Według niego zdarzenie zaszło w chwili dokładnie pośrodku między czasem wysłania a czasem odbioru sygnału, odległość zaś między nim a zdarzeniem równa jest połowie czasu, jaki sygnał zużył na odbycie drogi tam i z powrotem, pomnożonej przez prędkość światła. (Zdarzenie oznacza tu cokolwiek, co zachodzi w punkcie przestrzeni w dokładnie określonej chwili). Koncepcję tego pomiaru ilustruje rysunek 2, który jest przykładem diagramu czasoprzestrzennego. Używając tej metody, obserwatorzy poruszający się względem siebie przypiszą różne położenia i czasy temu samemu zdarzeniu. Żaden z tych pomiarów nie jest bardziej poprawny od innych, są one natomiast wzajemnie powiązane. Każdy obserwator może dokładnie wyliczyć, jakie położenie i czas jego kolega przypisał wydarzeniu, pod warunkiem, że zna jego względną prędkość.


Czas jest mierzony wzdłuż osi pionowej, odległość od obserwatora wzdłuż osi poziomej. Droga obserwatora przez czasoprzestrzeń jest zaznaczona pionową linią po lewej. Droga światła do i od zdarzenia zaznaczona jest liniami ukośnymi.

Rysunek 2


Metody tej używa się obecnie do precyzyjnych pomiarów odległości, ponieważ potrafimy znacznie dokładniej mierzyć upływ czasu niż odległość. Stąd też jeden metr jest zdefiniowany jako dystans pokonywany przez światło w ciągu 0,000000003335640952 sekundy, mierzonej za pomocą zegara cezowego. (Wybrano tę szczególną liczbę, aby nowa definicja była zgodna z historycznym określeniem metra; odległości między dwoma znaczkami na pewnej platynowej szynie przechowywanej w Paryżu). Równie dobrze moglibyśmy używać nowej, wygodnej jednostki długości, zwanej sekundą świetlną. Jest to po prostu odległość, jaką przebywa światło w ciągu jednej sekundy. Zgodnie z teorią względności mierzymy odległości, posługując się pomiarami czasu i prędkością światła, z czego automatycznie wynika, że każdy obserwator wyznaczy identyczną prędkość światła (z definicji równą 1 metrowi na 0,000000003335640952 sekundy). Nie ma żadnej potrzeby wprowadzania eteru, którego i tak zresztą nie można wykryć, jak pokazało doświadczenie Michelsona i Morleya. Teoria względności zmusza nas jednak do zasadniczej zmiany koncepcji czasu i przestrzeni. Musimy przyjąć, iż czas nie jest zupełnie oddzielny i niezależny od przestrzeni, lecz jest z nią połączony w jedną całość, zwaną czasoprzestrzenią.

Jak wiadomo z codziennej praktyki, położenie jakiegoś punktu w przestrzeni możemy wyznaczyć za pomocą trzech liczb zwanych jego współrzędnymi. Na przykład, można powiedzieć, że pewien punkt w pokoju znajduje się dwa metry od jednej ściany, metr od drugiej i półtora metra nad podłogą. Można też określić położenie punktu, podając jego długość i szerokość geograficzną oraz wysokość nad poziomem morza. Wolno nam wybrać dowolne trzy współrzędne, ale powinniśmy pamiętać, że istnieją tu granice ich użyteczności, których nie powinno się przekraczać. Nie należy wyznaczać pozycji Księżyca, podając jego odległość w kilometrach na północ i na zachód od Piccadilly Circus oraz wysokość nad poziomem morza. Lepiej podać jego odległość od Słońca, wysokość ponad płaszczyzną, na której leżą orbity planet, oraz kąt między linią łączącą Księżyc ze Słońcem a linią od Słońca do pobliskiej gwiazdy, takiej jak Alfa Centauri. Z kolei te współrzędne nie są przydatne do opisu położenia Słońca w Galaktyce albo położenia Galaktyki w Gromadzie Lokalnej. W gruncie rzeczy można wyobrażać sobie wszechświat w postaci zbioru zachodzących na siebie obszarów. W każdym obszarze można wprowadzić inny zespół trzech współrzędnych, aby określić położenie dowolnego punktu.

Zdarzenie jest czymś, co zachodzi w określonym punkcie przestrzeni i w określonej chwili. Aby wyznaczyć zdarzenie, należy zatem podać cztery współrzędne. Można je wybrać dowolnie – posłużyć się dowolnymi trzema, dobrze określonymi współrzędnymi przestrzennymi i dowolną miarą czasu. Zgodnie z teorią względności współrzędne przestrzenne i czasowe nie różnią się zasadniczo, podobnie jak nie ma różnicy między dowolnymi dwiema współrzędnymi przestrzennymi. Zawsze można wybrać nowy układ współrzędnych, w którym – powiedzmy – pierwsza współrzędna przestrzenna jest kombinacją dwóch starych, dajmy na to poprzednio pierwszej i drugiej. Na przykład, zamiast określać położenie pewnego punktu na Ziemi w kilometrach na północ i na zachód od Piccadilly, możemy je wyznaczyć w kilometrach na północny zachód i północny wschód od Piccadilly. W teorii względności wolno również wybrać nową współrzędną czasową, będącą kombinacją starego czasu (w sekundach) i odległości na północ od Piccadilly (w sekundach świetlnych).

Często wygodnie jest przyjmować, że cztery współrzędne zdarzenia wyznaczają jego pozycję w czterowymiarowej przestrzeni, zwanej czasoprzestrzenią. Przestrzeni czterowymiarowej nie sposób sobie wyobrazić. Mnie osobiście, często dostateczną trudność sprawia przedstawienie sobie przestrzeni trójwymiarowej! Bardzo łatwo natomiast narysować na diagramie przestrzeń dwuwymiarową, taką jak powierzchnia Ziemi. (Powierzchnia Ziemi jest dwuwymiarowa, ponieważ położenie dowolnego punktu można określić za pomocą dwóch współrzędnych: długości i szerokości geograficznej). Będę tu z reguły używał diagramów, na których czas zawsze wzrasta pionowo do góry, a jeden z wymiarów przestrzennych jest zaznaczony poziomo. Pozostałe dwa wymiary będą ignorowane lub ukazywane za pomocą perspektywy. (Mam na myśli diagramy czasoprzestrzenne, takie jak rysunek 2). Na przykład rysunek 3 przedstawia czas mierzony w latach wzdłuż osi pionowej w górę, oraz odległość między Słońcem a gwiazdą Alfa Centauri, mierzoną wzdłuż osi poziomej w kilometrach. Trajektorie Słońca i Alfa Centauri w czasoprzestrzeni przedstawiają pionowe linie po prawej i lewej stronie. Promień światła porusza się po przekątnej; jego podróż od Słońca do Alfa Centauri trwa cztery lata.


Rysunek 3


Jak widzieliśmy, z równań Maxwella wynika, że prędkość światła nie zależy od prędkości, z jaką porusza się jego źródło. Ten wniosek został potwierdzony przez bardzo dokładne pomiary. Stąd z kolei wynika, że sygnał świetlny, wyemitowany w pewnej chwili z punktu w przestrzeni, rozchodzi się jak kula światła, której rozmiar i położenie nie zależą od prędkości źródła. Po upływie jednej milionowej części sekundy światło rozprzestrzeni się, przyjmując formę kuli o promieniu 300 metrów, po dwóch milionowych sekundy promień kuli będzie równy 600 metrom i tak dalej. Przypomina to rozchodzenie się małych fal na powierzchni stawu, gdy wrzucimy doń kamień. Zmarszczki rozchodzą się jako koła powiększające się w miarę upływu czasu. Spróbujmy wyobrazić sobie model trójwymiarowy, składający się z dwuwymiarowej powierzchni stawu i jednego wymiaru czasu. Rozchodzące się koła zmarszczek utworzą stożek, którego wierzchołek wyznaczony jest przez miejsce i moment uderzenia kamienia w powierzchnię wody (rys. 4). Podobnie, światło rozchodzące się z pewnego zdarzenia, tworzy trójwymiarowy stożek w czterowymiarowej czasoprzestrzeni. Stożek ten nazywamy stożkiem świetlnym przyszłości. W ten sam sposób można narysować drugi stożek, utworzony ze wszystkich zdarzeń, z których wysłane światło mogło dotrzeć do danego zdarzenia. Ten stożek nazywamy stożkiem świetlnym przeszłości (rys. 5).


Rysunek 4


Rysunek 5


Rysunek 6


Rysunek 7


Stożki świetlne przeszłości i przyszłości zdarzenia P dzielą czasoprzestrzeń na trzy regiony (rys. 6). Absolutna przyszłość zdarzenia P znajduje się we wnętrzu stożka świetlnego przyszłości. Jest to zbiór wszystkich zdarzeń, na które może oddziałać to, co dzieje się w P. Żaden sygnał z P nie może dotrzeć do zdarzeń poza stożkiem świetlnym P, ponieważ nic nie porusza się szybciej niż światło. Dlatego to, co zdarzyło się w P, nie może wpłynąć na takie zdarzenia. Absolutna przeszłość zdarzenia P to region wewnątrz stożka świetlnego przeszłości P. Jest to zbiór tych wszystkich zdarzeń, z których wysłany sygnał mógł dotrzeć do P. Wobec tego absolutna przeszłość P to zbiór wszystkich zdarzeń mogących mieć wpływ na to, co zdarzyło się w P. Jeśli wiadomo, co dzieje się w określonej chwili we wszystkich punktach obszaru przestrzeni położonego wewnątrz stożka przeszłości P, to można przewidzieć, co zdarzy się w P. „Gdzie indziej” jest częścią czasoprzestrzeni leżącą poza obu stożkami świetlnymi zdarzenia P. Zdarzenia w „gdzie indziej” nie mogły wpłynąć na P ani zdarzenie P nie może wpłynąć na nie. Na przykład, gdyby Słońce przestało świecić dokładnie w tej chwili, nie miałoby to wpływu na obecne zdarzenia na Ziemi, ponieważ Ziemia byłaby w „gdzie indziej” tego wydarzenia (rys. 7). Dowiedzielibyśmy się o tym dopiero po ośmiu minutach, bo tak długo trwa podróż światła ze Słońca do Ziemi. Dopiero wtedy Ziemia znalazłaby się w stożku świetlnym zdarzenia, jakim było zgaśnięcie Słońca. Podobnie, nie wiemy, co dzieje się obecnie w odległych regionach wszechświata: światło docierające do nas z odległych galaktyk zostało wyemitowane miliony lat temu, a gdy patrzymy na najdalsze obiekty, jakie udało nam się zaobserwować, widzimy światło wysłane przed ośmioma miliardami lat. Kiedy więc patrzymy na wszechświat, widzimy go, jakim był w przeszłości.

Jeśli nie uwzględnimy siły ciążenia, jak Einstein i Poincaré w 1905 roku, to otrzymamy teorię nazywaną szczególną teorią względności. W każdym zdarzeniu (punkcie czasoprzestrzeni) możemy skonstruować stożki świetlne (stożek świetlny to zbiór wszystkich trajektorii promieni świetlnych wysłanych z tego zdarzenia), a ponieważ prędkość światła jest jednakowa we wszystkich zdarzeniach i we wszystkich kierunkach, wszystkie stożki będą identyczne i będą wskazywały ten sam kierunek w czasoprzestrzeni. Wiemy, że nic nie może poruszać się prędzej niż światło; to oznacza, że droga dowolnego ciała w czasoprzestrzeni musi leżeć wewnątrz stożka świetlnego dowolnego zdarzenia leżącego na tej drodze (rys. 8).


Rysunek 8


Szczególna teoria względności z powodzeniem wyjaśnia fakt, że prędkość światła jest taka sama dla różnych obserwatorów (zgodnie z rezultatami doświadczenia Michelsona i Morleya) i poprawnie opisuje zjawiska, jakie zachodzą, kiedy ciała poruszają się z prędkością bliską prędkości światła. Jest ona jednak sprzeczna z teorią Newtona, która powiada, że ciała przyciągają się wzajemnie z siłą, która zależy od odległości między nimi. Wynika stąd, że wraz ze zmianą położenia jednego ciała zmienia się natychmiast siła działająca na drugie. Innymi słowy, efekty grawitacyjne powinny podróżować z nieskończoną prędkością, a nie z prędkością mniejszą lub równą prędkości światła, jak wymaga szczególna teoria względności. W latach 1908–1914 Einstein wielokrotnie, bez powodzenia, próbował znaleźć teorię ciążenia zgodną ze szczególną teorią względności. Ostatecznie w 1915 roku zaproponował nową teorię, zwaną dziś ogólną teorią względności.

Rewolucyjność pomysłu Einsteina polega na potraktowaniu grawitacji odmiennie niż innych sił, a mianowicie jako konsekwencji krzywizny czasoprzestrzeni. Czasoprzestrzeń nie jest płaska, jak zakładano uprzednio, lecz zakrzywiona lub „pofałdowana” przez rozłożoną w niej energię i masę. Ciała takie jak Ziemia nie są zmuszone do poruszania się po zakrzywionej orbicie przez siłę ciążenia; należy raczej powiedzieć, że poruszają się w zakrzywionej przestrzeni po linii najbliższej linii prostej, zwanej linią geodezyjną. Linia geodezyjna to najkrótsza (lub najdłuższa) droga łącząca dwa sąsiednie punkty. Na przykład, powierzchnia Ziemi tworzy dwuwymiarową przestrzeń zakrzywioną. Linią geodezyjną na Ziemi jest tzw. wielkie koło, które stanowi najkrótszą drogę między dwoma punktami (rys. 9). Ponieważ linia geodezyjna jest najkrótszą linią między dowolnymi dwoma lotniskami, drogę tę nawigatorzy wskazują pilotom samolotów. Według ogólnej teorii względności ciała zawsze poruszają się po liniach prostych w czterowymiarowej przestrzeni, nam jednak wydaje się, że ich droga w przestrzeni jest krzywa. (Przypomina to obserwację samolotu przelatującego nad górzystym terenem. Choć leci on po prostej w trójwymiarowej przestrzeni, jego cień porusza się po krzywej na dwuwymiarowej przestrzeni Ziemi).


Rysunek 9


Masa Słońca zakrzywia czasoprzestrzeń w taki sposób, że choć Ziemia porusza się po linii prostej w czterowymiarowej czasoprzestrzeni, nam się wydaje, że wędruje ona po orbicie eliptycznej w przestrzeni trójwymiarowej. W rzeczywistości orbity planet przewidywane na podstawie ogólnej teorii względności są niemal takie same jak te, które wynikają z teorii Newtona. W wypadku Merkurego jednak, który jako planeta najbliższa Słońca odczuwa najsilniej efekty grawitacyjne i którego orbita jest raczej wydłużona, teoria względności przewiduje, że długa oś elipsy powinna obracać się dookoła Słońca z prędkością około jednego stopnia na 10 tysięcy lat. Efekt ten, choć tak nieznaczny, zauważony został jeszcze przed 1915 rokiem i stanowił jeden z pierwszych doświadczalnych dowodów poprawności teorii Einsteina. W ostatnich latach zmierzono za pomocą radaru nawet mniejsze odchylenia orbit innych planet od przewidywań teorii Newtona i okazały się zgodne z przewidywaniami wynikającymi z teorii względności.

Promienie świetlne muszą również poruszać się po liniach geodezyjnych w czasoprzestrzeni. I w tym wypadku krzywizna czasoprzestrzeni sprawia, że wydaje nam się, iż światło nie porusza się po liniach prostych w przestrzeni. A zatem z ogólnej teorii względności wynika, iż promienie światła są zaginane przez pole grawitacyjne. Na przykład, teoria przewiduje, że stożki świetlne w punktach bliskich Słońca pochylają się lekko ku niemu, co spowodowane jest masą Słońca. Oznacza to, że promienie światła odległych gwiazd przechodząc w pobliżu Słońca, zostają ugięte o pewien mały kąt, co obserwator ziemski zauważa jako zmianę pozycji gwiazdy na niebie (rys. 10). Oczywiście, gdyby światło gwiazdy zawsze przechodziło blisko Słońca, nie bylibyśmy w stanie powiedzieć, czy promienie zostały ugięte, czy też gwiazda naprawdę znajduje się tam, gdzie ją widzimy. Ponieważ jednak Ziemia porusza się wokół Słońca, to różne gwiazdy wydają się przesuwać za Słońcem i wtedy promienie ich światła zostają ugięte. Zmienia się wówczas pozorne położenie tych gwiazd względem innych.


Rysunek 10


W normalnych warunkach bardzo trudno zauważyć ten efekt, gdyż światło Słońca uniemożliwia obserwację gwiazd pojawiających się na niebie blisko Słońca. Udaje się to jednak podczas zaćmienia Słońca, kiedy Księżyc przesłania światło słoneczne. Przewidywania Einsteina dotyczące ugięcia promieni nie mogły być sprawdzone natychmiast, w 1915 roku, gdyż uniemożliwiła to wojna światowa. Dopiero w 1919 roku brytyjska ekspedycja, obserwując zaćmienie Słońca z Afryki Zachodniej, wykazała, że promienie światła rzeczywiście zostają ugięte przez Słońce, tak jak wynika to z teorii. Potwierdzenie słuszności niemieckiej teorii przez naukowców brytyjskich uznano powszechnie za wielki akt pojednania obu krajów po zakończeniu wojny. Dość ironiczną wymowę ma zatem fakt, iż po późniejszym zbadaniu fotografii wykonanych przez tę ekspedycję okazało się, że błędy obserwacji były równie wielkie jak efekt, który usiłowano zmierzyć. Poprawność rezultatów stanowiła zatem dzieło czystego trafu lub też – jak to w nauce nie tak znów rzadko się zdarza – wynikała ze znajomości pożądanego wyniku. Późniejsze pomiary potwierdziły jednak przewidywane przez teorię względności ugięcie światła z bardzo dużą dokładnością.

Kolejną konsekwencją ogólnej teorii względności jest stwierdzenie, że czas powinien płynąć wolniej w pobliżu ciał o dużej masie, takich jak Ziemia. Wynika to z istnienia związku między energią światła i jego częstością (liczbą fal światła na sekundę): im większa energia, tym większa częstość. W miarę jak światło wędruje w górę w polu grawitacyjnym Ziemi, jego energia maleje, a zatem maleje też jego częstość (co oznacza wydłużanie się przedziału czasu między kolejnymi grzbietami fal). Komuś obserwującemu Ziemię z góry wydawałoby się, że wszystko na jej powierzchni dzieje się wolniej. Istnienie tego efektu sprawdzono w 1962 roku za pomocą pary bardzo dokładnych zegarów zamontowanych na dole i na szczycie wieży ciśnień. Dolny zegar chodził wolniej, dokładnie potwierdzając przewidywania ogólnej teorii względności. Różnica szybkości zegarów na różnych wysokościach ma obecnie spore znaczenie praktyczne, ponieważ współczesne systemy nawigacyjne posługują się sygnałami z satelitów. Obliczając pozycje statku bez uwzględnienia teorii względności, otrzymalibyśmy wynik różniący się od prawdziwego o parę mil!

Prawa ruchu Newtona pogrzebały ideę absolutnej przestrzeni. Teoria względności wyeliminowała absolutny czas. Rozważmy sytuację pary bliźniaków. Przypuśćmy, że jeden z nich spędza życie na szczycie góry, a drugi na poziomie morza. Pierwszy starzeje się szybciej, dlatego przy ponownym spotkaniu braci bliźniaków jeden z nich będzie starszy. W opisanym przypadku różnica wieku byłaby bardzo mała, ale stałaby się o wiele większa, gdyby jeden z bliźniaków wyruszył w długą podróż statkiem kosmicznym poruszającym się z prędkością bliską prędkości światła. Wracając na Ziemię, byłby o wiele młodszy od swego brata, który pozostał na naszej planecie. Ten efekt znany jest jako paradoks bliźniąt, ale jest to paradoks tylko dla ludzi myślących w kategoriach absolutnego czasu. W teorii względności nie istnieje żaden jedyny absolutny czas, każdy obserwator ma swoją własną miarę czasu, uzależnioną od swego położenia i ruchu.

Przed rokiem 1915 przestrzeń i czas uważane były za niezmienną arenę zdarzeń, która w żaden sposób od tych zdarzeń nie zależała. Twierdzi tak nawet szczególna teoria względności. Ciała poruszają się, siły przyciągają lub odpychają, ale czas i przestrzeń tylko niezmiennie trwają.

Zupełnie inny pogląd na czas i przestrzeń zawiera ogólna teoria względności. Czas i przestrzeń są tu dynamicznymi wielkościami: poruszające się ciała i oddziałujące siły wpływają na krzywiznę czasoprzestrzeni – a z kolei krzywizna czasoprzestrzeni wpływa na ruch ciał i działanie sił. Przestrzeń i czas nie tylko wpływają na wszystkie zdarzenia we wszechświecie, ale też i zależą od nich. Podobnie jak nie sposób mówić o wydarzeniach we wszechświecie, pomijając pojęcia czasu i przestrzeni, tak też bezsensowne jest rozważanie czasu i przestrzeni poza wszechświatem.

Nowe rozumienie czasu i przestrzeni zrewolucjonizowało naszą wizję wszechświata. Stara idea wszechświata niezmiennego, mogącego istnieć wiecznie, ustąpiła miejsca nowej koncepcji dynamicznego, rozszerzającego się wszechświata, który przypuszczalnie powstał w określonej chwili w przeszłości i może skończyć swe istnienie w określonym czasie w przyszłości. Ta rewolucja stanowi temat następnego rozdziału. Wiele lat później w tym właśnie punkcie rozpocząłem swoje badania w dziedzinie fizyki teoretycznej. Roger Penrose i ja pokazaliśmy, iż z ogólnej teorii względności Einsteina wynika, że wszechświat musiał mieć początek i zapewne musi mieć również koniec.

Krótka historia czasu

Подняться наверх