Читать книгу Маленькая книга о черных дырах - Стивен Габсер - Страница 2

Предисловие

Оглавление

Это произошло 14 сентября 2015 года, почти ровно через 100 лет после того, как Альберт Эйнштейн сформулировал свою общую теорию относительности. Два огромных приемника – один в штате Луизиана, другой в штате Вашингтон – проходили последнее тестирование перед научным экспериментом, результатом которого должна была стать регистрация гравитационных волн. Совершенно неожиданно записывающие устройства приемников зарегистрировали необычный сигнал. Если бы этот сигнал можно было услышать, он прозвучал бы как слабый глуховатый стук.

Спустя пять месяцев, после тщательного исследования данных, зафиксированных в тот день приемниками, сотрудники лазерно-интерферометрической гравитационно-волновой обсерватории (LIGO) опубликовали свое открытие. Оказалось, что зарегистрированный во время испытаний импульс и был именно одним из тех сигналов, ради приема которых была построена гигантская установка и который физики так надеялись принять в результате наблюдений, – далеким эхом слияния двух черных дыр в одну, более массивную. Мировое физическое сообщество было взволновано. Представьте, если бы мы всю жизнь жили, не воспринимая красного цвета, и вдруг пелена упала с наших глаз и мы в первый раз увидели розу.

И какую розу! Количественные оценки, выполненные по данным LIGO, показали, что слабый «стук», записанный приемниками, был порожден происшедшим более миллиарда лет назад слиянием двух черных дыр, каждая из которых была раз в тридцать массивнее Солнца. Во время столкновения в форме гравитационного излучения выделилась энергия, соответствующая примерно трем солнечным массам.

И черные дыры, и гравитационные волны давно уже были предсказаны общей теорией относительности Эйнштейна. На регистрацию именно таких гравитационных волн, какие теория предсказывает в случае слияния черных дыр, был настроен детектор LIGO, и именно им соответствовал сигнал, записанный 14 сентября. Но то, что произошло, было не просто доказательством правильности долго вынашиваемых теоретических идей. Первая регистрация гравитационных волн открыла эру гравитационно-волновой астрономии. Детектору LIGO посчастливилось «увидеть» событие, о котором физики грезили десятилетиями. Теперь мы будем исследовать открывшийся нам чудесный сад гравитационно-волновых явлений.

Большие события в науке редко бывают однозначными, поэтому сначала следует спросить: а насколько мы убеждены, что группа LIGO правильно истолковала принятый слабый импульс как дальнее эхо слияния черных дыр, случившегося миллиард лет назад? Если говорить коротко, то ответ будет: «На сто процентов». Сходится все. Сигнал зарегистрировали оба детектора. Поблизости не происходило ничего такого, что могло бы позволить объяснить его как-то иначе. Он был достаточно сильным, чтобы новый детектор LIGO смог его почувствовать, и при этом слишком слабым, чтобы он мог наблюдаться прежней аппаратурой. Гипотеза слияния черных дыр, случившегося миллиард лет назад, не противоречит общим представлениям астрофизики и космологии. И главное: вскоре подтвердились надежды на то, что и другие такие же события не заставят себя ждать. На рождество 2015 года LIGO объявила о регистрации второго сигнала, а 4 января 2017 года – третьего. В целом эти новые события похожи на первое, и это укрепляет нашу уверенность в том, что LIGO действительно наблюдает слияния черных дыр. В общем, мы полны уверенности, что находимся на пороге новой эры наблюдательной астрофизики – эры, в которой черные дыры будут играть первую скрипку.

В этой книге мы описываем черные дыры и как астрофизические объекты, существование которых уже почти не вызывает сомнений, и как лаборатории для теоретиков, где последние могут отточить свое понимание не только тяготения, но также и квантовой механики, и теплофизики. В главах 1 и 2 мы поговорим о специальной и общей теории относительности. В последующих главах мы продолжим наше изложение: обсудим шварцшильдовские черные дыры, вращающиеся черные дыры, столкновения черных дыр, гравитационное излучение, излучение Хокинга и потерю информации в черной дыре.

Что же такое черная дыра? В сущности, это область пространства-времени, которая стягивает в себя вещество и из которой невозможно выбраться. Сначала мы сосредоточим обсуждение на самых простых черных дырах, называемых шварцшильдовскими в честь их первооткрывателя Карла Шварцшильда. Есть старая поговорка: «Чем выше поднимаешься, тем больнее падать». Внутри шварцшильдовской черной дыры действует более сильное утверждение: подниматься некуда, можно только падать. Мы, правда, не вполне уверены, куда мы в конце концов упадем. Самая простая гипотеза, соответствующая математическим уравнениям, которые описывают шварцшильдовскую черную дыру, заключается в том, что в ее центре лежит чудовищно плотное, бесконечно сжатое материальное ядро. Столкновение с ним означает конец всего, даже времени. Проверить эту гипотезу довольно трудно, так как ни один наблюдатель, который рискнул бы отправиться в черную дыру, не мог бы даже сообщить нам о том, что он видит.

Но прежде, чем мы продолжим исследовать черные дыры Шварцшильда более глубоко, давайте сделаем шаг назад и рассмотрим тяготение в более слабых формах. Например, если мы запустим с поверхности Земли объект с достаточно большой вертикальной скоростью, он сможет двигаться вверх вечно. Минимальная скорость, для которой это верно, называется скоростью убегания, или второй космической скоростью, и если пренебречь трением о воздух, она составляет примерно 11,2 километра в секунду. Для сравнения вспомним, что человек вряд ли способен бросить мяч со скоростью большей, чем 45 метров в секунду, а это меньше, чем полпроцента скорости убегания. Скорость пули, вылетающей из боевого ружья, примерно 1,2 километра в секунду, что немного выше 10 % скорости убегания. Так что, говоря: «Чем выше поднимаешься, тем больнее падать», мы обычно имеем в виду, что, швыряя объект вверх обычными средствами, притяжение Земли мы вряд ли преодолеем.

Современное средство, способное бесповоротно победить земное притяжение и отправиться в космическое пространство, – это космическая ракета. Чтобы вырваться из объятий тяготения Земли, ракете не обязательно лететь со скоростью выше 11,2 километра в секунду (хотя некоторые из них на это способны). Ракета может лететь медленнее, но должна нести достаточно горючего, чтобы подняться до такой высоты, на которой гравитационное поле Земли существенно слабее, а скорость убегания, соответственно, меньше. Другими словами, если ракета должна полностью выйти за пределы действия гравитационного поля Земли, то в точке, где ее двигатели перестают работать, она должна иметь скорость большую, чем скорость убегания.

Интересно, а что, если бы Земля была гораздо плотнее? Тогда скорость убегания с ее поверхности была бы больше, ведь гравитационное поле Земли было бы гораздо сильнее. Если говорить об устойчивых формах вещества, то во Вселенной самая большая плотность его встречается в нейтронных звездах. Примерно полторы массы Солнца помещается внутри сферы радиусом всего в 12 километров, хотя радиусы нейтронных звезд пока измерены с не очень высокой точностью. Обычное вещество будет полностью расплющено по поверхности такой звезды ее чудовищной гравитационной силой, примерно в 100 миллиардов раз превышающей силу тяжести на Земле. При радиусе в 12 километров скорость убегания составит примерно 60 % скорости света. Но не будем останавливаться – представим себе, что нам удалось сжать нейтронную звезду еще сильнее. Если мы доведем ее радиус до 4,5 километра, скорость убегания достигнет скорости света. Продолжим сжатие, и характер поля тяготения полностью изменится. Никакая форма материи уже не сможет преодолеть силу гравитации. Двигаться во времени – будет означать неизбежно и бесповоротно стремиться внутрь сферы вдоль ее радиуса. Вырваться будет невозможно. Это и будет черная дыра.


Рис. 0.1. Схематическое представление геометрии черной дыры. Вдалеке от горизонта пространство-время плоское. С приближением к горизонту оно становится все более искривленным, но при этом остается независимым от времени, или статическим. Однако после пересечения горизонта пространство-время становится динамическим: с течением времени два из пространственных измерений (имеющих сферическую геометрию) сжимаются, а третье (не показанное на рисунке) удлиняется, и это происходит до тех пор, пока все пространство не вытянется и не сожмется в бесконечно длинную и тонкую сингулярность.


Главная цель первых глав этой книги – уточнить, что же такое «черная дыра». Здесь ключевой будет идея «горизонта событий», который можно назвать поверхностью черной дыры. В геометрическом смысле эта поверхность является двумерной областью в трехмерном пространстве. Например, в простейшем случае шварцшильдовской черной дыры ее горизонт представляет собой идеальную сферу, радиус которой называют радиусом Шварцшильда. Но у горизонта черной дыры есть одна странность (по крайней мере, в привычном для нас смысле): он не является поверхностью чего-то конкретного. Пролетая сквозь него, вы не заметите ничего особенного. Вот только если вы захотите повернуть обратно и выйти наружу, ничего не получится. Неважно, какие усилия вы будете для этого прикладывать – пользоваться ракетой, лазерной пушкой или чем-нибудь еще. Неважно, какую помощь будут пытаться вам оказать снаружи. Снова оказаться на внешней стороне горизонта или хотя бы послать наружу сигнал SOS невозможно. Образно говоря, на горизонте черной дыры вы будто на кромке водопада, с которой пространство-время мощным потоком неотвратимо низвергается в сингулярность – а в ней разрушается все.

Черные дыры – это реальные объекты, а не просто мысленный эксперимент! Считается, что во Вселенной они возникают по крайней мере в двух ситуациях. По поводу первой из них вспомним, что мы чуть выше узнали о нейтронных звездах. Когда в недрах мас сивных звезд заканчивается ядерное горючее, они коллапсируют – обрушиваются внутрь самих себя. В процессе коллапса большая часть вещества звезды выбрасывается в окружающее пространство в результате взрыва, называемого вспышкой сверхновой. (Кстати, обычно считается, что именно взрывы сверхновых играют главную роль в распространении металлов и других сравнительно тяжелых элементов по всей Вселенной.) Но на месте взрыва все же может остаться слишком много вещества, чтобы из него могла образоваться устойчивая нейтронная звезда: сколлапсировав, это оставшееся вещество образует черную дыру массой по крайней мере в несколько масс Солнца. Черные дыры, слияния которых наблюдались детектором LIGO, еще массивнее, но все равно укладываются в модель звездного коллапса.

А вот черные дыры в центрах галактик, по-видимому, гораздо больше. Подробности процесса образования таких черных дыр таинственны – возможно, они связаны с существованием темного вещества, с физикой очень ранней Вселенной или и с тем и с другим. Черные дыры в центрах галактик имеют невероятно большие массы: от тысяч до миллиардов масс Солнца. Одно такое чудовище, по-видимому, находится в центре Млечного Пути: в нем около 4 миллионов солнечных масс. Мы могли бы спросить: как можно быть уверенными в присутствии черной дыры, если никакой сигнал не в состоянии выскользнуть из-под ее горизонта? Ответ состоит в том, что гравитационное притяжение черной дыры воздействует на окружающие ее объекты. Отслеживая движения звезд в окрестности центра Млечного Пути, мы убеждаемся в том, что там находится какой-то очень массивный и очень плотный объект. Он, конечно, не обязан быть именно черной дырой, но можно точно сказать, что если это не черная дыра, то что-то гораздо более странное. Иными словами, черная дыра в этой ситуации является самым простым из всех возможных объектов, и поэтому все сходятся на том, что в центрах многих, если не большинства, галактик действительно находятся сверхмассивные черные дыры.

Черные дыры исключительно удобны с точки зрения теории, так как математически они гораздо проще большинства астрофизических объектов, например звезд. Энергию звезд обеспечивают ядерные реакции в их недрах. Вещество внутри звезд подвергается гигантскому давлению и участвует в гидродинамических движениях, которые мы можем промоделировать численно, но понимаем еще далеко не полностью. Динамика поверхности звезды, вероятно, столь же сложна, как и изменчивая погода на Земле. По сравнению со всем этим черная дыра отличается великолепной простотой. В отсутствие другого вещества черные дыры должны принимать одну из нескольких определенных форм, которые в явном виде описываются уравнениями общей теории относительности Эйнштейна в терминах неевклидовой геометрии. Конечно, вещество, падающее в черную дыру, усложняет картину, но и при этих условиях достигнуто вполне удовлетворительное понимание того, что будет происходить с обычным веществом. Существует даже подробное математическое описание того, как одна черная дыра сталкивается с другой. В главе 6 этой книги подробно объясняется, как строится это описание и что оно означает для интерпретации таких экспериментов, как наблюдения LIGO.

Странности начинаются, когда выясняется, что черные дыры в действительности не такие уж черные. Методами квантовой механики Стивен Хокинг доказал, что черные дыры имеют определенную температуру, связанную с их поверхностным тяготением. Фактически появилась целая научная дисциплина, известная как термодинамика черных дыр; в ней их геометрические свойства ставятся в точное соответствие с характеристиками, описываемыми теорией теплоты, то есть температурой, энергией и энтропией. Существует даже предположение, что внутренние части черных дыр в удаленных областях Вселенной перекрываются, и это помогает объяснить такой квантовый эффект, как запутанность. Мы поговорим об этих проблемах в главе 7.

Черные дыры продолжают привлекать внимание ученых. Астрономы ищут все более точное описание свойств вращающихся черных дыр и поэтому ждут очень многого от сотрудничества с гравитационно-волновыми обсерваториями: есть надежда на основе наблюдений описать катаклизмические события, происходящие при слияниях черных дыр. Гравитационно-волновая астрономия находится в самом начале пути. Усилиями ученых всего мира строится сеть детекторов в Соединенных Штатах (два детектора LIGO: в Хэнфорде, штат Вашингтон, и в Ливингстоне, штат Луизиана), в Европе (Virgo и GEO600), в Японии (KAGRA) и в Индии (LIGO India). Одновременно специалисты в области теории струн изучают черные дыры в многомерных пространствах – не только для измерения квантовых эффектов в тяготении, но и для построения физических аналогий столь разнообразным процессам, как столкновения тяжелых ионов, вязкие жидкости, сверхпроводники. Наконец, существование черных дыр подталкивает нас к поистине странным вопросам: а не могут ли они когда-нибудь стать полезными человеку? Что же в действительности находится внутри них? Как можно представить себе падение в черную дыру? А может быть, мы уже падаем в нее и просто еще не знаем об этом?

Маленькая книга о черных дырах

Подняться наверх