Читать книгу ДНК – не приговор. Удивительная связь между вами и вашими генами - Стивен Хэйне - Страница 3

Глава 1. Введение
Революция в изучении генома и вы

Оглавление

Если геномная революция вызывает у вас беспокойство и вы не можете справиться с валом новой информации, то вы не одиноки. К технологическим новшествам не всегда легко привыкнуть, но проблема становится еще более сложной, когда речь заходит о нашем наследственном материале. Мы находим развитие геномики настолько тревожным в том числе из-за его ошеломляющей скорости. Главной причиной головокружительных темпов этого прогресса является революция персональных компьютеров. Известный закон, выведенный сооснователем корпорации Intel Гордоном Муром, гласит: количество транзисторов на кристаллах интегральных схем удваивается каждые два года. Но скорость развития геномики сильно опережает даже это. На первую полную расшифровку генома человека в 2003 году затратили несколько миллиардов долларов и тысячи человеко-лет. Но всего лишь десятилетие спустя она же стоила около 1000 долларов и могла быть выполнена всего за несколько дней. Секвенирование генома больше не является узкоспециальной процедурой для тех, кто проводит исследования в рамках международных объединений крупных научных институтов. Теперь оно доступно и нам, обычным потребителям, и вскоре может стать частью рядовых медицинских услуг. В мгновение ока геномная революция просочилась в нашу повседневную жизнь.

Еще переворот в геномике так тревожит людей потому, что, в отличие от прочих научных открытий, он затрагивает каждого лично. Расщепление атома, конечно, сильно изменило мир, но расшифровка собственного генома заставляет нас по-другому смотреть на себя. Расшифровать свою уникальную последовательность ДНК – как заглянуть в хрустальный шар и открыть секреты, доставшиеся нам от предков.

Но главная причина тревоги из-за геномной революции состоит в том, что с точки зрения психологии для нас естественно не понимать ее. В отличие, скажем, от физики элементарных частиц. Никто за пределами физического научного сообщества не строит предположений о том, как из атомов можно создать голову или хвост живого существа. А вот идея о наличии у каждого генов, которые делают этого человека им самим, кажется интуитивно понятной. Но такие представления являются неточными или по крайней мере неполными. Тем не менее мы убеждены в способности генов контролировать нашу жизнь. Мы генетические фаталисты.

То, как это работает, прекрасно видно на примере документального сериала 2014 года «ДНК мертвых знаменитостей», который транслировался на британском канале Channel 4. Об основном замысле шоу рассказал его ведущий Марк Эванс: «Я хочу найти ДНК самых известных людей, которые когда-либо жили. Цель состоит в том, чтобы выяснить, кем они были на самом деле». Мужчина погружается в зловещий мир незаконной торговли частями тела с целью получить и генотипировать останки мертвых знаменитостей. Это должно помочь разгадать тайны их жизней. Перед шоу поставлена задача «понять, что сделало Эйнштейна таким умным, Мэрилин Монро – настолько привлекательной, а Адольфа Гитлера – злым». Ответы на эти и другие важные вопросы ждали долгие годы, пока их прочтут непосредственно в геномах известных людей.

В моем любимом эпизоде Эванс пытался выяснить, из-за чего умер Элвис Пресли. Ему удалось добыть образец волос, который якобы состриг с головы короля рок-н-ролла и сохранил его парикмахер. Получение подлинных частиц знаменитостей стало ключевой проблемой для шоу: в этом же эпизоде Эванс заплатил 5000 долларов за предполагаемый локон короля Георга, но в лаборатории ему сообщили, что он купил всего лишь элемент очень дорогого парика. Ведущий был уверен, что сбереженный парикмахером образец волос принадлежал именно Элвису, так как генетическое тестирование выявило факторы риска мигрени, глаукомы и ожирения – всего, от чего страдал Пресли[4]. И предполагаемую «улику» нашли по точному генетическому адресу: RSID193922380, ген MYBPC3, 11-я хромосома. В этом месте в образце был нуклеотид G (а не C, как у большинства людей). Этот конкретный вариант гена предположительно был связан с наследственной гипертрофической кардиомиопатией – тяжелой болезнью сердца. И Элвис действительно умер от сердечного приступа. Эванс спросил у генетика Стивена Кингсмора: «Как вы думаете, это могло привести к смерти Элвиса?». Кингсмор ответил несколько осторожно: «Сомнительно». Но Эванс счел ответ ученого достаточным для вывода о том, что «ранняя смерть Элвиса – его генетическая судьба». По всему миру выходили газеты с красноречивыми заголовками, такими как «Шокирующие результаты ДНК показывают, что Элвису Пресли было суждено умереть молодым» (The Mirror. 2014. 24 March). Тайна преждевременной смерти Элвиса вроде бы раскрылась.

Впрочем, если мы рассмотрим это утверждение более внимательно, то возникнут сомнения. Вариант Элвиса, который рассматривался в шоу (с нуклеотидом G в RSID193922380), вовсе не является весомым прогностическим фактором наследственной гипертрофической кардиомиопатии[5]. К тому же у нас нет никаких доказательств (например, результатов вскрытия) того, что у Пресли когда-либо диагностировали это заболевание[6]. Правда, ближе к концу жизни Элвис действительно страдал от мигрени, глаукомы и ожирения. Но была ли причиной всего этого доставшаяся ему комбинация «испорченных» генов? Конечно, нет никакой прямой зависимости. Есть по меньшей мере 97 распространенных вариантов генов, увеличивающих вероятность ожирения[7]. Практически у всех нас присутствует несколько из них. Единственный вариант, выявленный в ДНК Элвиса доктором Кингсмором, даже не относится к существенным прогностическим факторам. То же самое касается генетических рисков развития мигрени[8] и глаукомы[9] у Пресли. Ни один из вариантов генов, идентифицированных в ДНК Элвиса, не имеет какой-либо предсказательной силы в отношении этих заболеваний. Говорить, что гены привели к плохому состоянию здоровья короля рок-н-ролла, то же самое, что утверждать, будто Дональда Трампа выбрали кандидатом на пост президента от Республиканской партии из-за необычайно теплой зимы. Погода может влиять на явку избирателей, но не оказывать решающее влияние на результат голосования. Здесь задействовано слишком много других причин.

Тривиальный, но важный вопрос: является ли изучение генома Элвиса лучшим способом разгадать тайну того, что же стало причиной его сердечного приступа? В конце концов, Пресли едва ли был ярым приверженцем здорового образа жизни. Как известно, он пристрастился к наркотикам, включая демерол, и его не раз госпитализировали из-за передозировки барбитуратов[10]. В отчете о вскрытии перечислены 11 препаратов, находившихся в крови Пресли в момент смерти[11]. Кроме того, о пристрастии Элвиса к еде слагались легенды. Якобы его любимый бутерброд представлял собой целый багет, начиненный банкой арахисового масла, банкой виноградного желе и примерно половиной килограмма бекона. Авторы документального сериала BBC Arena утверждали: ближе к концу жизни ежедневное потребление калорий Элвисом сравнимо с таковым у азиатского слона![12] Если в этом есть доля правды, было бы разумнее исследовать генетические особенности, которые позволяли королю рок-н-ролла оставаться относительно худым при таком невероятном переедании.

Объяснение смерти Элвиса генетикой кажется более удовлетворительным, чем любовью к огромным бутербродам, не правда ли? Но, как бы это утверждение ни соответствовало нашим фаталистским представлениям о генах, оно все равно остается явным преувеличением прогностической силы генетических вариаций Элвиса. Популярность шоу «ДНК мертвых знаменитостей» прекрасно иллюстрирует то, как предубеждения в отношении генов заставляют нас терять голову.

4

Конечно, если бы продюсеры программы серьезно относились к определению того, действительно ли этот образец принадлежал Элвису, им достаточно было бы найти образец ДНК его живого родственника.

5

Многие варианты гена MYBPC3 связаны с развитием наследственной гипертрофической кардиомиопатии, которая, по мнению доктора Кингсмора с небольшой вероятностью могла привести к смерти Элвиса. Например, есть аутосомная доминантная мутация гена MYBPC3, которая часто влияет на развитие гипертрофической кардиомиопатии (см.: Dhandapany, P. S., Sadayappan, S., Xue, Y., Powell, G. T., Rani, D. S., Nallari, P., et al. (2009). A common MYBPC3 (cardiac myosin binding protein C) variant associated with cardiomyopathies in South Asia. Nature Genetics, 41, 187–191). Но у Элвиса не было ни одного из патогенных вариантов гена MYBPC3. Вариант Элвиса, который обсуждался в шоу, с нуклеотидом G в RSID193922380, не является сильным предиктором гипертрофической кардиомиопатии и в настоящее время плохо изучен. Его рассматривали только в нескольких медицинских работах наряду с большим количеством различных ДНК-маркеров вдоль одного и того же гена. Разные версии о связи варианта Элвиса с семейной гипертрофической кардиомиопатией колеблются от «сомнительно» до «вероятно» (см.: Rodriguez-Garcia, M. I., Monserrat, L., Ortiz, M., Fernández, X., Cazón, L., Núñez, L., et al. (30.04.2010). Screening mutations in myosin binding protein C3 gene in a cohort of patients with hypertrophic cardiomyopathy. BMC Medical Genetics, 11, 67. doi: 10.1186/1471-2350-11-67; Ehlermann, P., Weichenhan, D., Zehelein, J., Steen, H., Pribe, R., Zeller, R., et al. (28.10.2008). Adverse events in families with hypertrophic or dilated cardiomyopathy and mutations in the MYBPC3 gene. BMC Medical Genetics, 9, 95. doi: 10.1186/1471-2350-9-95; Olivotto, I., Kassem, H., & Girolami, F. (2011). Microvascular function is selectively impaired in patients with hypertrophic cardiomyopathy and sarcomere myofilament gene mutations. Journal of the American College of Cardiology, 58, 839–848; http://www.ncbi.nlm.nih.gov/clinvar/?term=rs193922380; http://www.ncbi.nlm.nih.gov/clinvar/variation/36607/).

7

В программе нашли вариант на 19-й хромосоме, но самые сильные предикторы находятся в другом месте (Locke, A. E., Kahali, B., Berndt, S. I., Justice, A. E., Pers, T. H., Day, F. R., et al. (2015). Genetic studies of body mass index yield new insights for obesity biology. Nature, 518, 197–206).

8

В программе нашли вариант на 1-й хромосоме, но есть много других предикторов. Хотя в последнее время их надежность поставлена под сомнение (Palotie, A., Anttila, V., Winsvold, B. S., Gormley, P., Kurth, T., Bettella, F., McMahon, G., et al. (2013). Genome-wide analysis identifies new susceptibility loci for migraine. Nature Genetics, 45, 912–916; De Vries, B., Anttila, V., Freilinger, T., Wessman, M., Kaunisto, M. A., Kallela, M., et al. (2015). Systematic re-evaluation of genes from candidate gene association studies in migraine using a large genome-wide association data set. Cephalalagia).

9

В программе нашли вариант на 17-й хромосоме, но более сильные предикторы находятся в других хромосомах (см.: Bailey, J. N. C., Loomis, S. J., Kang, J. H., Allingham, R. R., Gharahkhani, P., Khor, C. C., et al. (2015). Genome-wide association analysis identifies TXNRD2, ATXN2, and FOXC1 as susceptibility loci for primary open-angle glaucoma. Nature Genetics, 48, 189–194).

10

Guralnick, P. (2000). The unmaking of Elvis Presley. New York, NY: Back Bay Books.

ДНК – не приговор. Удивительная связь между вами и вашими генами

Подняться наверх