Читать книгу The fauna of the deep sea - Sydney J. Hickson - Страница 6
CHAPTER I
A SHORT HISTORY OF THE INVESTIGATIONS
ОглавлениеOur knowledge of the natural history of the deep seas may be said to have commenced not more than fifty years ago. There are, it is true, a few fragments of evidence of a fauna existing in depths of more than a hundred fathoms to be found in the writings of the earlier navigators, but the methods of deep-sea investigation were so imperfect in those days that naturalists were disposed to believe that in the abysses of the great oceans life was practically non-existent.
Even Edward Forbes just before his death wrote of an abyss ‘where life is either extinguished or exhibits but a few sparks to mark its lingering presence,’ but in justice to the distinguished naturalist it should be remarked that he adds, ‘Its confines are yet undetermined, and it is in the exploration of this vast deep-sea region that the finest field for submarine discovery yet remains.’
Forbes was only expressing the general opinion of naturalists of his time when he refers with evident hesitation to the existence of an azoic region. His own dredging excursions in depths of over one hundred fathoms proved the existence of many peculiar species that were previously unknown to science. ‘They were like,’ he says, ‘the few stray bodies of strange red men, which tradition reports to have been washed on the shores of the Old World before the discovery of the New, and which served to indicate the existence of unexplored realms inhabited by unknown races, but not to supply information about their character, habits, and extent.’
In the absence of any systematic investigation of the bottom of the deep sea, previous to Forbes’s time the only information of deep-sea animals was due to the accidental entanglement of certain forms in sounding lines, or to the minute worms that were found in the mud adhering to the lead.
As far back as 1753, Ellis described an Alcyonarian that was brought up by a sounding line from a depth of 236 fathoms within eleven degrees of the North Pole by a certain Captain Adriaanz of the ‘Britannia.’ The specimen was evidently an Umbellula, and it is stated that the arms (i.e. Polyps) were of a bright yellow colour and fully expanded when first brought on deck.
In 1819 Sir John Ross published an account of his soundings in Baffin’s Bay, and mentions the existence of certain worms in the mud brought from a depth of 1,000 fathoms, and a fine Caput Medusæ (Astrophyton) entangled on the sounding line at a depth of 800 fathoms.
In the narrative of the voyage of the ‘Erebus’ and ‘Terror,’ published in 1847, Sir James Ross calls attention to the existence of a deep-sea fauna, and makes some remarks on the subject that in the light of modern knowledge are of extreme interest. ‘I have no doubt,’ he says, ‘that from however great a depth we may be enabled to bring up the mud and stones of the ocean, we shall find them teeming with animal life.’ This firm belief in the existence of an abysmal fauna was not, as it might appear from the immediate context of the passage I have quoted, simply an unfounded speculation on his part, but was evidently the result of a careful and deliberate chain of reasoning, as may be seen from the following passage that occurs in another part of the same book:—‘It is well known that marine animals are more susceptible of change of temperature than land animals; indeed they may be isothermally arranged with great accuracy. It will, however, be difficult to get naturalists to believe that these fragile creatures could possibly exist at the depth of nearly 2,000 fathoms below the surface; yet as we know they can bear the pressure of 1,000 fathoms, why may they not of two? We also know that several of the same species of creatures inhabit the Arctic that we have fished up from great depths in the Antarctic seas. The only way they could get from one pole to the other must have been through the tropics; but the temperature of the sea in those regions is such that they could not exist in it, unless at a depth of nearly 2,000 fathoms. At that depth they might pass from the Arctic to the Antarctic Ocean without a variation of five degrees of temperature; whilst any land animal, at the most favourable season, must experience a difference of fifty degrees, and, if in the winter, no less than 150 degrees of Fahrenheit’s thermometer—a sufficient reason why there are neither quadrupeds, nor birds, nor land insects common to both regions.’
In the year 1845, Goodsir succeeded in obtaining a good haul in Davis Straits, at a depth of 300 fathoms. It included Mollusca, Crustacea, Asterids, Spatangi, and Corallines.
In 1848, Lieutenant Spratt read a paper at the meeting of the British Association at Swansea, on the influence of temperature upon the distribution of the fauna in the Ægean seas, and at the close of this paper we find the following passage, confirming in a remarkable way the work of previous investigators in the same field. He says: ‘The greatest depth at which I have procured animal life is 390 fathoms, but I believe that it exists much lower, although the general character of the Ægean is to limit it to 300 fathoms; but as in the deserts we have an oasis, so in the great depths of 300, 400, and perhaps 500 fathoms we may have an oasis of animal life amidst the barren fields of yellow clay dependent upon favourable and perhaps accidental conditions, such as the growth of nullipores, thus producing spots favourable for the existence and growth of animal life.’
The next important discovery was that of the now famous Globigerina mud by Lieutenants Craven and Maffit, of the American Coast survey, in 1853, by the help of the sounding machine invented by Brooke. This was reported upon by Professor Bailey.
Further light was thrown upon the deep-sea fauna by Dr. Wallich in 1860, on board H.M.S. ‘Bulldog’, by the collection of thirteen star-fish living at a depth of 1,260 fathoms.
Previous to this Torell, during two excursions to the Northern seas, had proved the existence of an extensive marine fauna in 300 fathoms, and had brought up with the ‘Bulldog’ machine many forms of marine invertebrates from depths of over 1,000 fathoms; but it was not until 1863, when Professor Lovén read a report upon Torell’s collections, that these interesting and valuable investigations became known to naturalists.
Nor must mention be omitted of the remarkable investigations of Sars and his son, the pioneers of deep-sea zoology on the coasts of Norway, who, by laborious work commenced in 1849, failed altogether to find any region in the deep water where animal life was non-existent, and indeed were the first to predict an extensive abysmal fauna all over the floor of the great oceans. One of the many remarkable discoveries made by Sars was Rhizocrinus, a stalked Crinoid.
Ever since that time the Norwegians and the Swedes have been most energetic in their investigations, and the publications of the results of the Norske Nord-havns expeditions are regarded by all naturalists as among the most valuable contributions to our knowledge of the deep-sea fauna.
Notwithstanding the previous discovery of many animals that undoubtedly came from the abysmal depths of the ocean, there were still some persons who found a difficulty in believing that animal life could possibly exist under the enormous pressure of these great depths. It was considered to be more probable that these animals were caught by the dredge or sounding lines in their ascent or descent; and that they were merely the representatives of a floating fauna living a few fathoms below the surface.
The first direct proof of the existence of an invertebrate fauna in deep seas was found by the expedition that was sent to repair the submarine cable of the Mediterranean Telegraph Company. The cable had broken in deep water, and a ship was sent out to examine and repair the damage. When the broken cable was brought on deck, it bore several forms of animal life that must have become attached to it and lived at the bottom of the sea in water extending down to a depth of 1,200 fathoms. Among other forms a Caryophyllia was found attached to the cable at 1,100 fathoms, an oyster (Ostrea cochlear), two species of Pecten, two gasteropods, and several worms.
The discoveries that had been made indicating the existence of a deep-sea fauna led to the commission of H.M. ships ‘Lightning’ and ‘Porcupine,’ and the systematic investigation that was made by the naturalists on these vessels brought home to the minds of naturalists the fact that there is not only an abysmal fauna, but that in places this deep-sea fauna is very rich and extensive. The ‘Lightning’ was despatched in the spring of 1868 and carried on its investigations in the neighbourhood of the Faeroe Islands, but the vessel was not suitable for the purpose and met with bad weather. The results, however, were of extreme importance; for, besides solving many important points concerning the distribution of ocean temperature, ‘it had been shown beyond question that animal life is both varied and abundant at depths in the ocean down to 650 fathoms at least, notwithstanding the extraordinary conditions to which animals are there exposed.’
Among the remarkable animals dredged by the ‘Lightning’ were the curious Echinoderm, Brisinga coronata, previously discovered by Sars, and the Hexactinellid sponges, Holtenia and Hyalonema, the Crinoids Rhizocrinus and Antedon celticus, and the Pennatulid Bathyptilum Carpenteri, not to mention numerous Foraminifera new to science.
In the spring of the following year, 1869, the Lords Commissioners of the Admiralty despatched the surveying vessel ‘Porcupine’ to carry on the work commenced by the ‘Lightning.’
The first cruise was on the west coast of Ireland, the second cruise to the Bay of Biscay, where dredging was satisfactorily carried on to a depth of 2,435 fathoms, and the third in the Channel between Faeroe and Scotland.
The dredging in 2,435 fathoms was quite successful, and the dredge contained several Mollusca, including new species of Dentalium, Pecten, Dacrydium, &c., numerous Crustacea and a few Annelids and Gephyrea, besides Echinoderma and Protozoa. A satisfactory dredging was also made in 1,207 fathoms.
The third cruise was also successful and brought many new species to light, including the Porocidaris purpurata, and a remarkable heart urchin, Pourtalesia Jeffreysi.
Concerning Pourtalesia Sir Wyville Thomson says:—
‘The remarkable point is that, while we had so far as we were aware no living representative of this peculiar arrangement of what is called “disjunct” ambulacra, we have long been acquainted with a fossil family—the Dysasteridæ—possessing this character. Many species of the genera Dysaster, Collyrites, &c., are found from the lower oolite to the white chalk, but there the family had previously been supposed to have become extinct.’
The discovery of two new Crinoids led to the anticipation that the Crinoidea, the remarkable group of Echinoderma, supposed at the time to be on the verge of extinction, probably form rather an important element in the abysmal fauna.
One of the most interesting results was the discovery of three genera in deep water, Calveria, Neolampas and Pourtalesia, almost immediately after they were discovered by Pourtales in deep water on the coasts of Florida, showing thus a wide lateral distribution and suggesting a vast abysmal fauna.
A year before the ‘Lightning’ was despatched, Count Pourtales had commenced a series of investigations of the deep-sea fauna off the coast of Florida. The first expedition started in 1867 from Key West for the purpose of taking some dredgings between that port and Havana. Unfortunately yellow fever broke out on board soon after they started, and only a few dredgings were taken. However, the results obtained were of such importance that they encouraged Pourtales to undertake another expedition and enabled him to say very positively ‘that animal life exists at great depths, in as great a diversity and as great an abundance as in shallow water.’
In the following years, 1868 and 1869, the expeditions were more successful, and many important new forms were found in water down to 500 fathoms. Perhaps the most interesting result obtained was the discovery of Bourguetticrinus of D’Orbigny; it may even be the species named by him which occurs fossil in a recent formation in Guadeloupe.
By this time the interest of scientific men was thoroughly excited over the many problems connected with this new field of work. The prospect of obtaining a large number of new and extremely curious animals, the faint hope that living Trilobites, Cystids, and other extinct forms might be discovered, and lastly the desire to handle and investigate great masses of pure protoplasm in the form of the famous but unfortunately non-existent Bathybius, induced some men of wealth and leisure to spend their time in deep-sea dredging, and stimulated the governments of some civilised countries to lend their aid in the support of expeditions for the deep-sea survey.
Mr. Marshall Hall’s yacht, the ‘Norma,’ was employed for some time in this work, and an extensive collection of deep-sea animals was made. About the same time Professor L. Agassiz was busy on board the American ship, the ‘Hassler,’ in continuing the work of Count Pourtales, and later on the Germans fitted out the ‘Gazelle,’ and the French the still more famous ‘Travailleur’ and ‘Talisman’ expeditions. Nor must we omit to mention in this connection the cruise of the Italian vessel, the ‘Vittor Pessani,’ nor those of the British surveying vessels, the ‘Knight Errant’ and the ‘Triton,’ and the American vessels, ‘The Blake’ and the ‘Fish Hawk.’
But of all these expeditions, by far the most complete in all the details of equipment, and the arrangements made for the publication of the results, was the expedition fitted out in 1873 by the British Government. The voyage of H.M.S. ‘Challenger’ is so familiar to all who take an interest in the progress of scientific discovery, that it is not necessary to do more than make a passing mention of it in this place. The excellent books that were written by Wyville Thomson, by Moseley, and by other members of the staff, have made the general reader familiar with the narrative of that remarkable cruise and the most striking of the many scientific discoveries that were made; while the numerous large monographs that have been published during the past fourteen years give opportunities to the naturalist of obtaining all the requisite information concerning the detailed results of the expedition.
The expenditure of the large sum of money upon this expedition and the publication of its reports has been abundantly justified. The information obtained by the ‘Challenger’ will be for many years to come the nucleus of our knowledge of the deep-sea fauna, the centre around which all new facts will cluster, and the guide for further investigations.
To say that the ‘Challenger’ accomplished all that was expected or required would be to over-estimate the value of this great expedition, but nevertheless it is difficult for us, even now, thoroughly to grasp the importance of the results obtained or to analyse and classify the numerous and very remarkable facts that were gained during her four years’ cruise.
It is, of course, impossible, in a few lines, to give a summary of the more important of the Natural History results of the ‘Challenger’ expedition. Besides proving the existence of a fauna in the sea at all depths and in all regions, the expedition further proved that the abysmal fauna, taken as a whole, does not possess characters similar to those of the fauna of any of the secondary or even tertiary rocks. A few forms, it is true, known to us up to that time only as fossils, were found to be still living in the great depths, but a large majority of the animals of these regions were found to be new and specially modified forms of the families and genera inhabiting shallow waters of modern times. No Trilobites, no Blastoids, no Cystoids, no new Ganoids, and scarcely any deep-sea Elasmobranchs were brought to light, but the fauna was found to consist mainly of Teleosteans, Crustacea, Cœlentera, and other creatures unlike anything known to have existed in Palæozoic times, specially modified in structure for their life in the great depths of the ocean.
In 1876 the S.S. ‘Vöringin’ was chartered by the Norwegian Government and was dispatched to investigate the tract of ocean lying between Norway, the Faeroe islands, Jan Mayen, and Spitzbergen. The investigations extended over three years, the vessel returning to Bergen in the winter months.
The civilian staff of the ‘Vöringin’ included Professors H. Mohn, Danielssen, and G. O. Sars, and the expedition was successful in obtaining a large number of animals from deep water by means of the dredge and tangles and by the trawl.
The results of this expedition have been published in a series of large quarto volumes under the general title of the Norske Nord-havns Expedition.
The most interesting forms brought to light by the Norwegians are the two genera Fenja and Aegir, animals possessing the general form of sea anemones but distinguished from all Cœlenterates by the presence of a continuous and straight gut reaching from the mouth to the aboral pores which completely shuts off the cœlenteron or general body cavity from the stomodæum.
In more recent times the work has been by no means neglected. With the advantage of employing many modern improvements in the dredges and trawls in use, the American steamer, the ‘Albatross,’ has been engaged in a careful investigation of the deep-sea fauna of the eastern slopes of the Pacific Ocean, while at the same time Her Majesty’s surveying vessel, the ‘Investigator,’ has been obtaining some interesting and valuable results from a survey of the deep waters of the Indian Ocean. But our knowledge of this vast and wonderful region is still in its infancy. We have gathered, as it were, only a few grains from a great unknown desert. It is true that we may not for many years, if ever, obtain any results that will cause the same deep interest and excitement to the scientific public as those obtained by the first great national expeditions, but there are still many important scientific problems that may be and will be solved by steady perseverance in this field of work, and if we can only obtain the same generous support from public institutions and from those in charge of national funds that we have received in the past two decades, many more important facts will doubtless be brought to light.