Читать книгу Лечение болезней нервной системы биологически активными добавками к пище (БАД) - Евгений Широков, Т. Д. Рендюк - Страница 2
Глава 1
Особенности строения и функции нервной системы
ОглавлениеЦентральная и периферическая нервная система
В процессе эволюции живые организмы миллионы лет совершенствовали системы управления функциями и связями с внешней средой. В среде простейших организмов, а затем и многоклеточных живых существ, постепенно сформировались механизмы гуморального пути управления. Функционирование гуморального контроля и управления зависит от сложных или простых химических веществ, само присутствие которых или изменение их концентрации во внешней или внутренней среде, оказывает непосредственное влияние на различные функции организма. Совершенствование гуморального механизма управления привело к формированию эндокринной системы, работа которой основана на действии гормонов – биологически активных веществ, оказывающих влияние на состояние клетки в крайне малых концентрациях. Достижением этого этапа эволюции живых организмов стало появление признаков специализации каналов управления – гормоны оказывают влияние только на специфические рецепторы, «свои» клетки. Таким образом, гормональная регуляция функций приобретала свойства целенаправленных, специфических влияний на работу клеток, органов и систем. Анатомическим субстратом эндокринной системы стали специализированные железы, выделяющие гормоны во внутренние среды организма (щитовидная железа, надпочечники, половые железы, поджелудочная железа и другие ткани, способные синтезировать в малых концентрациях сильнодействующие вещества, гормоны или низкомолекулярные пептиды – регуляторы функций). Гормональная регуляция за длительный период эволюции достигла высокой степени развития и является древнейшим механизмом управления, который обеспечивает связь сложных живых биологических систем с внешней средой, приспособление к изменяющимся условиям существования.
Нервная система – более молодое приобретение эволюции сложных многоклеточных организмов. Появление и развитие нервной системы обусловлено необходимостью ускорения прохождения регулирующих сигналов и уточнения их адресной передачи, поскольку в процессе эволюции жизнеспособность сохраняли виды, приобретавшие способность к быстрым целенаправленным действиям.
Структурной единицей нервной системы является крупная специализированная клетка – нейрон.
Как правило, нейрон имеет несколько коротких отростков для приема информации (дендриты) и один длинный отросток, посредством которого нервный сигнал передается клеткам и органам (аксон). Строение нервной клетки определяет и основной принцип функционирования различных отделов нервной системы. Все ее образования имеют афферентное (воспринимающее), центральное (обрабатывающее), эфферентное (действующее) звено. По своему назначению нейроны разделяют на двигательные (моторные), чувствительные (сенсорные) и интернейроны, выполняющие соединительные функции. Как правило, нейроны расположены в пределах головного или спинного мозга (центральная нервная система), а их отростки формируют нервные волокна, из которых состоят длинные периферические нервы. Периферические нервы подобно электрическим проводам соединяют образования центральной нервной системы с кожей, мышцами, внутренними органами.
Головной мозг человека представляет сложнейшую структуру из 10–13 млрд, нейронов, которые образуют сложную пространственную сеть. Нервные клетки соединяются между собой синапсами – сложными микроскопическими образованиями, которые с помощью биохимических реакций обеспечивают передачу информации между нейронами.
Вспомогательные клетки нейроглии (астроциты) не только создают физическую опору для нейронов, но вместе с сосудами обеспечивают потребности нервной ткани в кислороде и необходимых для жизни веществах, включая аминокислоты, липиды, гликопротеиды. Тело нервной клетки имеет микроскопические размеры, но длина аксона может достигать одного метра! Отростки нейронов, как правило, укрыты миелиновой оболочкой, которая обеспечивает стабильность обмена веществ в длинных нервных проводниках и высокую скорость передачи возбуждения.
Миелиновая оболочка требует постоянного обновления и пополнения необходимыми веществами. Синтез миелина осуществляется клетками нейроглии – олигодендроцитами, которые своими отростками соединяют аксон нейрона с сосудами. Миелиновая оболочка состоит из фосфолипидов, холестерина и небольшого количества белка, что придает ей более светлую окраску по сравнению с другими тканями. Именно поэтому в структурах нервной системы отличают серое вещество (преимущественно нейроны) и белое вещество (преимущественно проводники, покрытые миелиновой оболочкой). Необходимо отметить, что центральная и периферическая нервная система человека содержит более 200 г миелина – вещества, принимающего самое активное участие в обменных процессах. Для синтеза миелина необходимы: жиры, холестерин, витамины, фолиевая кислота, ферменты, обеспечивающие непрерывную ремиелинизацию. При разрушении миелиновой оболочки (демиелинизация) или слабой работе ферментов, обеспечивающих синтез этого вещества, неизбежно нарушается проводимость нервных волокон (демиелинизирующие заболевания, полиневропатии, лейкоэнцефалопатии).
Центральная нервная система человека – это головной и спинной мозг (масса примерно 1300 и 30 г соответственно). Головной мозг человека является сложнейшей функциональной системой, роль которой не в полной мере понятна и в настоящее время. Очевидны высшие корковые функции головного мозга: познание, память, речь, интеллект и т. д. Изучено участие отдельных структур головного мозга в формировании двигательных навыков (праксия) и узнавания (гнозия). Однако глубокие, наиболее древние функции головного мозга, связанные с адаптацией к изменяющимся условиям внешней среды и подсознанием, сложны, мало изучены и не так демонстративны. Известно, что ведущую роль в поддержании сложных процессов жизнедеятельности организма и участия в биосфере принадлежит глубоким отделам мозга – гипоталамусу и гипофизу (центральное представительство автономной, вегетативной нервной системы).
Именно здесь происходит согласование функций эндокринной и нервной системы, осуществляется управление сердечнососудистой системой, желудочно-кишечным трактом, железами внутренней секреции. Когда врачи говорят о вегетативной дисфункции, то чаще всего речь идет о нарушениях в работе именно этих центров управления. Тонкие регулирующие функции гипоталамической области головного мозга нарушаются в результате стресса, травмы, инфекции, интоксикации.
Периферическая нервная система представлена многочисленными нервными стволами, самым крупным из которых является седалищный нерв, состоящий из 1 млн. 200 тысяч отдельных нервных волокон – отростков нейронов. Периферические нервы обеспечивают движения, чувствительность и регуляцию обмена веществ (трофическая функция) всех органов и тканей.
При этом распределение территорий имеет сегментарный принцип: корешки спинномозговых нервов (С – шейный отдел, Э – грудной, Ь – поясничный, Б – крестцовый) имеют свою зону ответственности, которая легко обнаруживается областями чувствительности на коже.
Таким образом, нервная система – это управляющая структура организма человека, которая представлена центральным и периферическим отделами, вегетативными центрами, имеющими представительство во всех органах и тканях.
Метаболизм и биохимия нервной системы
Важнейшим условием правильной работы структур нервной системы следует считать сохранность механизмов синаптической передачи информации. Контакты между нервными клетками, между нейронами и тканями осуществляются посредством синапсов – специализированных окончаний нервных волокон, способных продуцировать медиаторы (вещества, с помощью которых осуществляется передача информации между нейронами).
Нейромедиаторами (нейротрансмиттерами) могут быть низкомолекулярные белки, аминокислоты, моноамины и даже витамины. Количество, качество и специфичность нейротрансмиттеров определяют сущность биологических ответов различных структур на действие нейрогенных стимулов. Другими словами, нейромедиаторы способны регулировать не только проводимость нервного импульса, но и определять сущность реакции органов и систем на этот стимул. В разных отделах нервной системы работают различные медиаторы. В настоящее время известно около 30 активных веществ, которые принимают участие в синаптической передаче. К ним относятся хорошо изученные соединения: ацетилхолин, дофамин, норадреналин, серотонин, гамма-аминомасляная кислота (ГАМК), менее изученные нейропептиды (энкефалины, эндорфины) и такие аминокислоты как, например, глицин. Образование нейрональных сетей и контактов между структурами нервной и эндокринной системы, кроме механизма синаптической передачи, осуществляется непосредственно клеткой посредством специализированных рецепторов, встроенных в клеточную мембрану. Межнейрональные связи привлекают внимание исследователей, прежде всего, с точки зрения возможности воздействия на них с помощью лекарств. Известно, например, что при паркинсонизме нарушения движений обусловлены недостаточной продукцией дофамина специализированными клетками экстрапирамидной системы головного мозга. Включение в схему лечения препаратов, содержащих этот монамин, явно улучшает состояние больных и возвращает им способность к передвижению. Примером участия нейропептидов в работе нервной системы может служить хорошо изученный обмен серотонина – одного из основных нейромедиаторов.