Читать книгу Oil-in-Water Nanosized Emulsions for Drug Delivery and Targeting - Tamilvanan Shunmugaperumal - Страница 52
REFERENCES
Оглавление1 Abele, S., Sjöberg, M., Hamaide, T. et al. (1997), Reactive surfactants in heterophase polymerization. 10. Characterization of the surface activity of new polymerizable surfactants derived from maleic anhydride, Langmuir, 13, 176–181. doi: 10.1021/la960577n
2 Akkar, A. and Müller, R.H. (2003a), Formulation of intravenous carbamazepine emulsions by SolEmuls® technology, Eur. J. Pharm. Biopharm., 55, 305–312. doi:10.1016/s0939‐6411(03)00028‐6
3 Akkar, A. and Müller, R.H. (2003b), Intravenous itraconazole emulsions produced by SolEmuls technology, Eur. J. Pharm. Biopharm., 56, 29–36. doi:10.1016/s0939‐6411(03)00063‐8
4 Aveyard, R., Binks, B.P., and Clint, J.H. (2003), Emulsions stabilized solely by colloidal particles, Adv. Colloid Interf. Sci., 100 (102), 503–546. doi:10.1016/S0001‐8686(02)00069‐6
5 Badawy, S.I., Narang, A.S., LaMarche, K.R. et al. (2016), Integrated application of quality‐by‐design principles to drug product development: a case study of brivanib alaninate film‐coated tablets, J. Pharm. Sci., 105 (1), 168–181. doi:10.1016/j.xphs.2015.11.023
6 Benichou, A., Aserin, A., and Garti, N. (2004), Double emulsions stabilized with hybrids of natural polymers for entrapment and slow release of active matters, Adv. Colloid Interf. Sci., 108 (109), 29–41. doi:10.1016/j.cis.2003.10.013
7 Binks, B.P. and Catherine, P. (2005), Nanoparticle silica‐stabilised oil‐in‐water emulsions: improving emulsion stability, Colloids Surf. A Physicochem. Eng. Aspects, 253, 105–115. doi:10.1016/j.colsurfa.2004.10.116
8 Binks, B.P., Desforges, A., and Duff, D.G. (2007b), Synergistic stabilization of emulsions by a mixture of surface‐active nanoparticles and surfactant, Langmuir, 23, 1098–1106. doi:10.1021/la062510y
9 Binks, B.P. and Lumsdon, S.O. (2000), Influence of particle wettability on the type and stability of surfactant‐free emulsions, Langmuir, 16, 8622–8631. doi:10.1021/la000189s
10 Binks, B.P., Rodrigues, J.A., and Frith, W.J. (2007a), Synergistic interaction in emulsions stabilized by a mixture of silica nanoparticles and cationic surfactant, Langmuir, 23, 3626–3636. doi:10.1021/la0634600
11 Buttle, S., Schmidt, R.H., and Müller, R.H. (2002), Production of amphotericin B emulsions based on SolEmuls technology, in: Fourth World Meeting on Pharmaceutics, Biopharmaceutics and Pharmaceutical Technology, Florence, pp. 1535–1536.
12 Capek, I. (2004), Degradation of kinetically‐stable o/w emulsions, Adv. Colloid Interf. Sci., 107, 125–155. doi:10.1016/S0001‐8686(03)00115‐5
13 Cegnar, M., Kos, J., and Kristl, J. (2004), Cystatin incorporated in poly(lactide‐co‐glycolide) nanoparticles: development and fundamental studies on preservation of its activity, Eur. J. Pharm. Sci., 22, 357–364. doi:10.1016/j.ejps.2004.04.003
14 Cohen, T., Sauvageon‐Martre, H., Brossard, D. et al. (1996), Amphotericin B eye drops as a lipidic emulsion, Int. J. Pharm., 137, 249–254. doi:10.1016/0378‐5173(96)04473‐0
15 Constantinides, P.P., Han, J., and Davis, S.S. (2006), Advances in the use of tocols as drug delivery vehicles, Pharm. Res., 23, 243–255. doi:10.1007/s11095‐005‐9262‐9
16 Constantinides, P.P., Tustian, A., and Kessler, D.R. (2004), Tocol emulsions for drug solubilization and parenteral delivery, Adv. Drug Deliv. Rev., 56, 1243–1255. doi:10.1016/j.addr.2003.12.005
17 Cotlier, E., Baskin, M., and Kresca, L. (1975), Effects of lysophosphatidyl choline and phospholipase A on the lens, Invest. Ophthalmol. Vis. Sci., 14, 697–701.
18 Cui, F., Wang, Y., Wang, J. et al. (2007), Preparation of redispersible dry emulsion using Eudragit E100 as both solid carrier and unique emulsifier, Colloids Surf. A Physicochem. Eng. Aspects, 307, 137–141. doi:10.1016/j.colsurfa.2007.05.013.
19 Calvo, P., Remuñá‐López, C., Vila‐Jato, J.L. et al. (1997), Development of positively charged colloidal drug carriers: chitosan‐coated polyester nanocapsules and submicro‐emulsions, Colloid Polym. Sci., 275, 46–53. doi:10.1007/s003960050050
20 Davis, S.S. and Washington, C. (1988), Drug emulsion, European Patent 0,296, 845, A1.
21 Dale, P.J., Kijlstra, J., and Vincent, B. (2006), The temperature stability of single and mixed emulsions stabilized by nonionic surfactants, Colloids Surf. A Physicochem. Eng. Aspects, 291, 85–92. doi:10.1016/j.colsurfa.2006.06.016
22 Debevec, V., Srčič, S., and Horvat, M. (2018), Scientific, statistical, practical, and regulatory considerations in design space development, Drug Dev. Ind. Pharm., 44 (3), 349–364. doi:10.1080/03639045.2017.1409755
23 EMA (2014), Questions and answers on level of detail in the regulatory submissions, EMA/59240/December 10, 2014.
24 EMA (2017), Report from the EMA‐FDA QbD pilot program, EMA/213746/April 19, 2017.
25 Eskandar, N.G., Simovic, S., and Clive, A. (2009), Nanoparticle coated submicron emulsions: sustained in‐vitro release and improved dermal delivery of all‐trans‐retinol, Pharm. Res., 26, 1764–1775. doi:10.1007/s11095‐009‐9888‐0
26 Fahmy, R. Kona, R. Dandu, R. et al. (2012), Quality by design I: application of failure mode effect analysis (FMEA) and Plackett‐Burman design of experiments in the identification of “main factors” in the formulation and process design space for roller‐compacted ciprofloxacin hydrochloride immediate‐release tablets, AAPS PharmSciTech., 13 (4), 1243–1254. doi: 10.1208/s12249‐012‐9844‐x
27 FDA Guidance for Industry (2004) PAT‐a framework for innovative pharmaceutical development, manufacturing, and quality assurance, (https://www.fda.gov/media/71012/download, Accessed on June 16, 2019).
28 FDA Guidance for Industry (2006), Q8 pharmaceutical development, (https://www.fda.gov/media/71524/download, Accessed on June 16, 2019).
29 Ghate, V.M., Kodoth, A.K., Raja, S. et al. (2019), Development of MART for the rapid production of nanostructured lipid carriers loaded with all‐trans retinoic acid for dermal delivery, AAPS PharmSciTech., 20, 162. doi:10.1208/s12249‐019‐1307‐1
30 Goldstein, D., Gofrit, O., Nyska, A. et al. (2007a), Anti‐HER2 cationic immunoemulsion as a potential targeted drug delivery system for the treatment of prostate cancer, Cancer Res., 67, 269–275. doi:10.1158/0008‐5472.CAN‐06‐2731
31 Goldstein, D., Nassar, T., Lambert, G. et al. (2005), The design and evaluation of a novel targeted drug delivery system using cationic emulsion‐antibody conjugates, J. Control. Release, 108, 418–432. doi:10.1016/j.jconrel.2005.08.021
32 Goldstein, D., Sader, O., and Benita, S. (2007b), Influence of oil droplet surface charge on the performance of antibody‐emulsion conjugates, Biomed. Pharmacother., 61, 97–103. doi:10.1016/j.biopha.2006.08.005
33 Grigoriev, D.O. and Miller, R. (2009), Mono‐ and multilayer covered drops as carriers, Curr. Opin. Colloid Interface Sci., 14, 48–59. doi:10.1016/j.cocis.2008.03.003
34 Hagigit, T., Abdulrazik, M., Orucov, F. et al. (2010), Topical and intravitreous administration of cationic nanoemulsions to deliver antisense oligonucleotides directed towards VEGF KDR receptors to the eye, J. Control. Release, 145 (3), 297–305. doi:10.1016/j.jconrel.2010.04.013
35 Hagigit, T., Nassar, T., Behar‐Cohen, F. et al. (2008), The influence of cationic lipid type on in vitro release kinetics of antisense oligonucleotide from cationic nanoemulsions, Eur. J. Pharm. Biopharm., 70 (1), 248–259. doi:10.1016/j.ejpb.2008.03.005
36 Han, J. and Washington, C. (2005), Partition of antimicrobial additives in an intravenous emulsion and their effect on emulsion physical stability, Int. J. Pharm., 288 (2), 263–271. doi:10.1016/j.ijpharm.2004.10.002
37 Hu, Z., Deng, Y., and Sun, Q. (2004), Synthesis of precipitated calcium carbonate nanoparticles using a two‐membrane system, Colloid J., 66 (6), 745–750. doi:10.1007/s10595‐005‐0017‐4
38 ICH (2005), Q9 quality risk management, (Available at http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q9/Step4/Q9_Guideline.pdf.) Accessed on August 1, 2019.
39 ICH (2008), Q10 pharmaceutical quality system, (Availabe at http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q10/Step4/Q10_Guideline.pdf.) Accessed on August 1, 2019.
40 ICH (2009), Q8(R2) pharmaceutical development. Part I: pharmaceutical development, and Part II: annex to pharmaceutical development, (Available at http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q8_R1/Step4/Q8_R2_Guideline.pdf.) Accessed on August 1, 2019.
41 Ishii, F. and Nii, T. (2005), Properties of various phospholipid mixtures as emulsifiers or dispersing agents in nanoparticle drug carrier preparation, Colloids Surf. B Biointerfaces, 41 (4), 257–262. doi:10.1016/j.colsurfb.2004.12.018
42 Joglekar, A.T. (1987), Product excellence through design of experiments, Cereal Foods World, 32, 857–868.
43 Jumaa, M., Furkert, F.H., and Müller, B.W. (2002), A new lipid emulsion formulation with high antimicrobial efficacy using chitosan, Eur. J. Pharm. Biopharm., 53 (1), 115–123. doi:10.1016/s0939‐6411(01)00191‐6
44 Jumaa, M. and Müller, B.W. (1998), The effect of oil components and homogenization condition on the physicochemical properties and stability of parenteral fat emulsions, Int. J. Pharm., 163 (s1–s2), 81–89. doi:10.1016/S0378‐5173(97)00369‐4
45 Jumaa, M. and Müller, B.W. (1999), Physicochemical properties of chitosan‐lipid emulsions and their stability during the autoclaving process, Int. J. Pharm., 183 (2), 175–184. doi:10.1016/s0378‐5173(99)00086‐1
46 Jumaa, M. and Müller, B.W. (2002), Parenteral emulsions stabilized with a mixture of phospholipids and PEG‐660‐12‐hydroxy‐stearate: evaluation of accelerated and long‐term stability, Eur. J. Pharm. Biopharm., 54 (2), 207–212. doi:10.1016/s0939‐6411(02)00057‐7
47 Kador, P.F. and Kinoshita, J.H. (1978), Phospholipid effects on the rat lens transport systems, Exp. Eye Res., 26 (6), 657–665. doi:10.1016/0014‐4835(78)90100‐8
48 Kim, T.W., Chung, H., Kwon, I.C. et al. (2005), Airway gene transfer using cationic emulsion as a mucosal gene carrier, J. Gen. Med., 7 (6), 749–758. doi:10.1002/jgm.711
49 Kim, Y.J., Kim, T.W., Chung, H. et al. (2003), The effects of serum on the stability and the transfection activity of the cationic lipid emulsion with various oils, Int. J. Pharm., 252 (1–2), 241–252. doi:10.1016/s0378‐5173(02)00676‐2
50 Lan, Q., Yang, F., Zhang, S. et al. (2007), Synergistic effect of silica nanoparticle and cetyltrimethyl ammonium bromide on the stabilization of O/W emulsions, Colloids Surf. A Physicochem. Eng. Aspects, 302 (1–3), 126–135. doi:10.1016/j.colsurfa.2007.02.010
51 Lance, M.R., Washington, C., and Davis, S.S. (1995), Structure and toxicity of amphotericin B/triglyceride emulsion formulations, J. Antimicrob. Chemother., 36 (1), 119–128. doi:10.1093/jac/36.1.119
52 Landfester, K. (2006), Synthesis of colloidal particles in miniemulsions, Annu. Rev. Mater. Res., 36, 231–279. doi:10.1146/annurev.matsci.36.032905.091025
53 Lee, V.H.L. and Robinson, J.R. (1986), Review: topical ocular drug delivery: recent developments and future challenges, J. Ocul. Pharmacol., 2 (1), 67–108. doi:10.1089/jop.1986.2.67
54 Liang, H., Brignole‐Baudouin, F., Rabinovich‐Guilatt, L. et al. (2008), Reduction of quaternary ammonium‐induced ocular surface toxicity by emulsions: an in vivo study in rabbits, Mol. Vis., 14, 204–216. http://www.molvis.org/molvis/v14/a26
55 Liu, Y., Mounkes, L.C., Liggitt, H.D. et al. (1997), Factors influencing the efficiency of cationic liposome‐mediated intravenous gene delivery, Nat. Biotechnol., 15 (2), 167–173. doi:10.1038/nbt0297‐167
56 Lundberg, B.B., Griffiths, G., and Hansen, H.J. (1999), Conjugation of an anti‐B‐cell lymphoma monoclonal antibody, LL2, to long‐circulating drug‐carrier lipid emulsions, J. Pharm. Pharmacol., 51, 1099–1105. doi:10.1211/0022357991776787
57 Lundberg, B.B., Griffiths, G., and Hansen, H.J. (2004), Cellular association and cytotoxicity of anti‐CD74‐targeted lipid drug‐carriers in B lymphoma cells, J. Control. Release, 94 (1), 155–161. doi:10.1016/j.jconrel.2003.09.016
58 Memisoglu, E., Bochot, A., Sen, M. et al. (2002), Amphiphilic β‐cyclodextrins modified on the primary face: synthesis, characterization and evaluation of their potential as novel excipients in the preparation of nanocapsules, J. Pharm. Sci., 91 (5), 1214–1224. doi:10.1002/jps.10105
59 Midmore, B.R. (1998), Synergy between silica and polyoxyethylene surfactants in the formation of o/w emulsions, Colloids Surf. A Physicochem. Eng. Aspects, 145 (1–3), 133–143. doi:10.1016/S0927‐7757(98)00577‐9
60 Montgomery, D.C. (2013), Design and Analysis of Experiments, 8th ed., Wiley, Hoboken, NJ; Chapter 1 (p. 3,19), Chapter 11 (p. 501), Chapter 14 (p. 605).
61 Moolman, F.S., Rolfes, H., van der Merwe, S.W. et al. (2004), Optimization of perfluorocarbon emulsion properties for enhancing oxygen mass transfer in a bio‐artificial liver support system, Biochem. Eng. J., 19 (3), 237–250. doi:10.1016/j.bej.2004.02.003
62 Motwani, S.K., Copra, S. Talegaonkar, S. et al. (2008), Chitosan‐sodium alginate nanoparticles as submicroscopic reservoirs for ocular delivery: formulation, optimization and in vitro characterization, J. Pharm. Biopharm., 68 (3), 513–525. doi:10.1016/j.ejpb.2007.09.009
63 Muchtar, S. and Benita, S. (1994), Emulsions as drug carriers for ophthalmic use, Colloid Surf. A Physicochem. Eng. Aspects, 91 (3), 181–190. doi:10.1016/0927‐7757(94)02882‐6
64 Müllar, R.H. (1990), Colloidal Carriers for Controlled Drug Delivery and Targeting: Modification, Characterization and In Vivo Distribution, Wiss Verl‐Ges, Stuttgart, Germany.
65 Müller, R.H. and Schmidt, S. (2002). SolEmuls technology for i.v. emulsions of poorly soluble drugs: amphotericin B, in: Fourth World Meeting on Pharamceutics, Biopharmaceutics and Pharmaceutical Technology, Florence, pp. 1451–1452.
66 Nakajima, M., Nabetani, H., Ichikawa, S. et al. (2003), Functional emulsions, US Patent 6538019.
67 Naskar, M.K., Patra, A., and Chatterjee, M. (2006), Understanding the role of surfactants on the preparation of ZnS nanocrystals, J. Colloid Interface Sci., 297 (1), 271–275. doi:10.1016/j.jcis.2005.10.057
68 Negi, P., Singh, B., Sharma, G. et al. (2015), Biocompatible lidocaine and prilocaine loaded‐nanosized emulsion system for enhanced percutaneous absorption: QbD‐based optimisation, dermatokinetics and in vivo evaluation, J. Microencapsul., 32 (5), 419–431. doi:10.3109/02652048.2015.104651
69 Nobs, L., Buchegger, F., Gurny, R. et al. (2004), Current methods for attaching targeting ligands to liposomes and nanoparticles, J. Pharm. Sci., 93 (8), 1980–1992. doi:10.1002/jps.20098
70 Ogawa, S., Decker, E.A., and McClements, D.J. (2003), Production and characterization of o/w emulsions containing cationic droplets stabilized by lecithin‐chitosan membranes, J. Agric. Food Chem., 51 (9), 2606–2812. doi:10.1021/jf020590f
71 Orloff, J.J. (2011), The promise and threat of quality risk management, Pharm. Technol., 35 (2), 38–40.
72 Pickering, S.U. (1907), Emulsions, J. Chem. Soc., 91, 2001–2021. doi:10.1039/CT9079102001
73 Pongcharoenkiat, N., Narsimhan, G., Lyons, R.T. et al. (2002), The effect of surface charge and partition coefficient on the chemical stability of solutes in o/w emulsions, J. Pharm. Sci., 91 (2), 559–570. doi:10.1002/jps.10064
74 Puri, D., Khatik, G.L., and Tamilvanan, S. (2019), Studies on olive‐and silicone‐oils‐based Janus macroemulsions containing ginger to manage primary dysmenorrheal pain, Mater. Sci. Eng. C Mater. Biol. Appl., 100, 276–285. doi:10.1016/j.msec.2019.01.137
75 Q8(R2) (2009), ICH harmonized tripartite guideline for pharmaceutical development, current step 4 version, (Accessed on August 1, 2019).
76 Simberg, D., Weisman, S., Talmon, Y. et al. (2003), The role of organ vascularization and lipoplex‐serum initial contact in intravenous murine lipofection, J. Biol. Chem., 278, 39858–39865. doi:10.1074/jbc.M302232200
77 Simovic, S. and Prestidge, C.A. (2003), Adsorption of hydrophobic silica nanoparticles at the PDMS droplet‐water interface, Langmuir, 19, 8364–8370. doi:10.1021/la0347197
78 Simovic, S. and Prestidge, C.A. (2007), Nanoparticle layers controlling drug release from emulsions, Eur. J. Pharm. Biopharm., 67 (1), 39–47. doi:10.1016/j.ejpb.2007.01.011
79 Simovic, S. and Prestidge, C.A. (2008), Colloidosomes from controlled interaction of submicrometer triglyseride droplets and hydrophilic silica nanoparticles, Langmuir, 24, 7132–7137. doi:10.1021/la800862v
80 Song, Y.K., Liu, D., and Maruyama, K.Z. (1996), Antibody mediated lung targeting of long‐circulating emulsions, PDA J. Pharm. Sci. Technol., 50 (6), 372–377.
81 Sonne, M.R. (2015), Tocopherol compositions for delivery of biologically active agents, in: USPTO Patent full‐text and image database no. 6,193,985, Dumex, Copenhagen, pp. 1–21.
82 Solans, C., Izquierdo, P., Nolla, J. et al. (2005), Nano‐emulsions, Curr. Opin. Colloid Interface Sci., 10 (3–4), 102–110. doi:10.1016/j.cocis.2005.06.004
83 Swietlikowska, D.W. and Sznitowska, M. (2006), Partitioning of parabens between phases of submicron emulsions stabilized with egg lecithin, Int. J. Pharm., 312 (1–2), 174–178. doi:10.1016/j.ijpharm.2006.01.005
84 Sznitowska, M., Janicki, S., Dabrowska, E.A. et al. (2002), Physicochemical screening of antimicrobial agents as potential preservatives for submicron emulsions, Eur. J. Pharm. Sci., 15 (5), 489–495. doi:10.1016/s0928‐0987(02)00034‐9
85 Tadros, T. (2006), Principles of emulsion stabilization with special reference to polymeric surfactants, J. Cosmet. Sci., 57, 153–169.
86 Tadros, T., Vandamme, A., Levecke, B. et al. (2004), Stabilization of emulsions using polymeric surfactants based on inulin, Adv. Colloid Interf. Sci., 108–109, 207–226. doi:10.1016/j.cis.2003.10.024
87 Tambe, D.E. and Sharma, M.M. (1993), Factors controlling the stability of colloid‐stabilized emulsions: I. an experimental investigation, J. Colloid Interface Sci., 157, 244–253. doi:10.1006/jcis.1993.1182
88 Tamilvanan, S. (2004), Oil‐in‐water lipid emulsions: implications for parenteral and ocular delivering systems, Prog. Lipid Res., 43 (6), 489–533. doi:10.1016/j.plipres.2004.09.001
89 Tamilvanan, S. (2008), Oil‐in‐water nanosized emulsions: medical applications, in: Gad, S.C., Ed., Pharmaceutical Manufacturing Handbook, Chapter 7.4, John Wiley & Sons Publishers, Hoboken, NJ, pp. 1329–1368. doi:10.1002/9780470259818.ch34
90 Tamilvanan, S. (2009), Formulation of multifunctional oil‐in‐water nanosized emulsions for active and passive targeting of drugs to otherwise inaccessible internal organs of the human body, Int. J. Pharm., 381 (1), 62–76. doi:10.1016/j.ijpharm.2009.08.001
91 Tamilvanan, S. and Benita, S. (2004), The potential of lipid emulsion for ocular delivery of lipophilic drugs, Eur. J. Pharm. Biopharm., 58 (2), 357–368. doi:10.1016/j.ejpb.2004.03.033
92 Tamilvanan, S., Khoury, K., Gilhar, D. et al. (2001), Ocular delivery of cyclosporin A. I. Design and characterization of cyclosporin A‐loaded positively‐charged submicron emulsion, STP Pharma Sci., 11, 421–426.
93 Tamilvanan, S., Kumar, B., Senthilkumar, S.R. et al. (2010), Stability assessment of injectable castor oil‐based nanosized emulsion containing cationic droplets stabilized by poloxamer‐chitosan emulsifier films, AAPS PharmSciTech., 11 (2), 904–909. doi:10.1208/s12249‐010‐9455‐3
94 Tamilvanan, S., Schmidt, S., Müller, R.H. et al. (2005), In vitro adsorption of plasma proteins onto the surface (charges) modified‐submicron emulsions for intravenous administration, Eur. J. Pharm. Biopharm., 59 (1), 1–7. doi:10.1016/j.ejpb.2004.07.001
95 Tang, S.Y., Manickam, S., Wei, T.K. et al. (2012), Formulation development and optimization of a novel cremophor EL‐based nanoemulsion using ultrasound cavitation, Ultrason. Sonochem., 19 (2), 330–345. doi:10.1016/j.ultsonch.2011.07.001
96 Teixeira, H., Dubernet, C., Puisieux, F. et al. (1999), Submicron cationic emulsions as a new delivery system for oligonucleotides, Pharm. Res., 16, 30–36. doi:10.1023/A:1018806425667
97 Trotta, M., Pattarino, F., and Ignoni, T. (2002), Stability of drug‐carrier emulsions containing phosphatidylcholine mixtures, Eur. J. Pharm. Biopharm., 53 (2), 203–208. doi:10.1016/s0939‐6411(01)00230‐2
98 Velev, O.D., Furusawa, K., and Nagayama, K. (1996), Assembly of latex particles by using emulsion droplets as templates. 1. Microstructured hollow spheres, Langmuir, 12, 2374–2384. doi:10.1021/la9506786
99 Weiss, C.K., Lorenz, M.R., Landfester, K. et al. (2007), Cellular uptake behavior of unfunctionalized and functionalized PBCA particles prepared in a miniemulsion, Macromol. Biosci., 7, 883–896. doi:10.1002/mabi.200700046
100 Woitiski, C.M. Veiga, F. Ribiero, A. et al. (2009), Design for optimization of nanoparticles integrating biomaterials for orally dose insulin, Eur. J. Pharm. Biopharm., 73 (1), 25–33. doi:10.1016/j.ejpb.2009.06.002
101 Yaseen, M., Lu, J.R., Webster, J.R.P. et al. (2006), The structure of zwitterionic phosphocholine surfactant monolayers, Langmuir, 22, 5825–5832. doi:10.1021/la053316z
102 Yi, S.W., Yune, Y., Kim, T.W. et al. (2000), A cationic lipid emulsion/DNA complex as a physically stable and serum‐resistant gene delivery system, Pharm. Res., 17, 314–320. doi:10.1023/A:1007553106681
103 Yilmaz, H. and Borchert, H.H. (2005), Design of a phytosphingosine‐containing, positively charged nanoemulsion as a colloidal carrier system for dermal application of ceramides, Eur. J. Pharm. Biopharm., 60, 91–98. doi:10.1016/j.ejpb.2004.11.009
104 Yu, L.X. (2008), Pharmaceutical quality by design: product and process development, understanding, and control, Pharm. Res., 25 (4), 781–791. doi:10.1007/s11095‐007‐9511‐1
105 Yu, L.X., Amidon, G., Khan, M.A. et al. (2014), Understanding pharmaceutical quality by design, AAPS J., 16 (4), 771–781. doi:10.1208/s12248‐014‐9598‐3