Читать книгу Атлас новых профессий. Новые материалы и нанотехнологии. Профессии, которые появятся до 2030 года - Татьяна Александровна Тонунц, Татьяна Тонунц - Страница 7
Профессия ближайшего будущего
Новые материалы и нанотехнологии
Нанотехнология
ОглавлениеМатериал из Википедии – свободной энциклопедии
Нанотехноло́гия – область фундаментальной и прикладной науки и техники, имеющая дело с совокупностью теоретического обоснования, анализа и синтеза, а также методов производства и применения продуктов с заданной атомной структурой путём контролируемого манипулирования отдельными атомами и молекулами.
На сегодняшний день (2018—2019 годы) в мире нет единого стандарта, описывающего, что такое нанотехнологии и нанопродукция.
Среди подходов к определению понятия «нанотехнологии» имеются следующие:
В Техническом комитете ISO/ТК 229 под нанотехнологиями подразумевается следующее: [1]
знание и управление процессами, как правило, в масштабе 1 нм, но не исключающее масштаб менее 100 нм в одном или более измерениях, когда ввод в действие размерного эффекта (явления) приводит к возможности новых применений;
использование свойств объектов и материалов в нанометровом масштабе, которые отличаются от свойств свободных атомов или молекул, а также от объемных свойств вещества, состоящего из этих атомов или молекул, для создания более совершенных материалов, приборов, систем, реализующих эти свойства.
На территории Российской Федерации понятие нанотехнологий установлено в ГОСТ Р 55416—2013 «Нанотехнологии. Часть 1. Основные термины и определения» [2], а именно:
совокупность технологических методов, применяемых для изучения, проектирования и производства материалов, устройств и систем, включая целенаправленный контроль и управление строением, химическим составом и взаимодействием составляющих их отдельных элементов нанодиапазона.
Согласно «Концепции развития в Российской Федерации работ в области нанотехнологий на период до 2010 года» (2004 г.) [3] нанотехнология определяется, как совокупность методов и приёмов, обеспечивающих возможность контролируемым образом создавать и модифицировать объекты, включающие компоненты с размерами менее 100 нм, хотя бы в одном измерении, и в результате этого получившие принципиально новые качества, позволяющие осуществлять их интеграцию в полноценно функционирующие системы большего масштаба.
Практический аспект нанотехнологий включает в себя производство устройств и их компонентов, необходимых для создания, обработки и манипуляции атомами, молекулами и наночастицами. Подразумевается, что не обязательно объект должен обладать хоть одним линейным размером менее 100 нм – это могут быть макрообъекты, атомарная структура которых контролируемо создаётся с разрешением на уровне отдельных атомов, либо же содержащие в себе нанообъекты. В более широком смысле этот термин охватывает также методы диагностики, характерологии и исследований таких объектов.
Нанотехнологии качественно отличаются от традиционных дисциплин, поскольку на таких масштабах привычные макроскопические технологии обращения с материей часто неприменимы, а микроскопические явления, пренебрежительно слабые на привычных масштабах, становятся намного значительнее: свойства и взаимодействия отдельных атомов и молекул или агрегатов молекул (например, силы Ван-дер-Ваальса), квантовые эффекты.
Нанотехнология и в особенности молекулярная технология – новые, очень мало исследованные дисциплины. Основные открытия, предсказываемые в этой области, пока не сделаны. Тем не менее, проводимые исследования уже дают практические результаты. Использование в нанотехнологии передовых научных достижений позволяет относить её к высоким технологиям.
Развитие современной электроники идёт по пути уменьшения размеров устройств. С другой стороны, классические методы производства подходят к своему естественному экономическому и технологическому барьеру, когда размер устройства уменьшается ненамного, зато экономические затраты возрастают экспоненциально. Нанотехнология – следующий логический шаг развития электроники и других наукоёмких производств.
Наночастицы
Современная тенденция к миниатюризации показала, что вещество может иметь совершенно новые свойства, если взять очень маленькую частицу этого вещества. Частицы размерами от 1 до 100 нанометров обычно называют «наночастицами». Так, например, оказалось, что наночастицы некоторых материалов имеют очень хорошие каталитические и адсорбционные свойства. Другие материалы показывают удивительные оптические свойства, например, сверхтонкие плёнки органических материалов применяют для производства солнечных батарей. Такие батареи, хоть и обладают сравнительно низкой квантовой эффективностью, зато более дёшевы и могут быть механически гибкими. Удается добиться взаимодействия искусственных наночастиц с природными объектами наноразмеров – белками, нуклеиновыми кислотами и др. Тщательно очищенные наночастицы могут самовыстраиваться в определённые структуры. Такая структура содержит строго упорядоченные наночастицы и также зачастую проявляет необычные свойства.
Наномедицина и химическая промышленность
Направление в современной медицине, основанное на использовании уникальных свойств наноматериалов и нанообъектов для отслеживания, конструирования и изменения биологических систем человека на наномолекулярном уровне.
ДНК-нанотехнологии используют специфические основы молекул ДНК и нуклеиновых кислот для создания на их основе чётко заданных структур [10].
Промышленный синтез молекул лекарств и фармакологических препаратов чётко определённой формы (бис-пептиды).
Компьютеры и микроэлектроника
Центральные процессоры – 15 октября 2007 года компания Intel заявила о разработке нового прототипа процессора, содержащего наименьший структурный элемент размерами примерно 45 нм. В дальнейшем компания намерена достичь размеров структурных элементов до 5 нм. Основной конкурент Intel, компания AMD, также давно использует для производства своих процессоров нанотехнологические процессы, разработанные совместно с компанией IBM. Характерным отличием от разработок Intel является применение дополнительного изолирующего слоя SOI, препятствующего утечке тока за счёт дополнительной изоляции структур, формирующих транзистор. Уже существуют рабочие образцы процессоров с транзисторами размером 14 нм и опытные образцы на 10 нм.
Жёсткие диски – в 2007 году Питер Грюнберг и Альберт Ферт получили Нобелевскую премию по физике за открытие GMR-эффекта, позволяющего производить запись данных на жестких дисках с атомарной плотностью информации.
Сканирующий зондовый микроскоп – микроскоп высокого разрешения, основанный на взаимодействии иглы кантилевера (зонда) с поверхностью исследуемого образца. Обычно под взаимодействием понимается притяжение или отталкивание кантилевера от поверхности из-за сил Ван-дер-Ваальса. Но при использовании специальных кантилеверов можно изучать электрические и магнитные свойства поверхности. СЗМ может исследовать как проводящие, так и непроводящие поверхности даже через слой жидкости, что позволяет работать с органическими молекулами (ДНК). Пространственное разрешение сканирующих зондовых микроскопов зависит от характеристик используемых зондов. Разрешение достигает атомарного по горизонтали и существенно превышает его по вертикали.
наноантенна – 9 февраля 2005 года в лаборатории Бостонского университета была получена антенна-осциллятор размерами порядка 1 мкм. Это устройство насчитывает 5000 миллионов атомов и способно осциллировать с частотой 1,49 гигагерц, что позволяет передавать с её помощью огромные объёмы информации.
Плазмоны – коллективные колебания свободных электронов в металле. Характерной особенностью возбуждения плазмонов можно считать так называемый плазмонный резонанс, впервые предсказанный Ми в начале XX века. Длина волны плазмонного резонанса, например, для сферической частицы серебра диаметром 50 нм составляет примерно 400 нм, что указывает на возможность регистрации наночастиц далеко за границами дифракционного предела (длина волны излучения много больше размеров частицы). В начале 2000 года, благодаря быстрому прогрессу в технологии изготовления частиц наноразмеров, был дан толчок к развитию новой области нанотехнологии – наноплазмонике. Оказалось возможным передавать электромагнитное излучение вдоль цепочки металлических наночастиц с помощью возбуждения плазмонных колебаний.