Читать книгу Lectures and Essays - Thomas Henry Huxley - Страница 10

THE HYPOTHESIS OF EVOLUTION. THE NEUTRAL AND THE FAVOURABLE EVIDENCE

Оглавление

Table of Contents

In the preceding lecture I pointed out that there are three hypotheses which may be entertained, and which have been entertained, respecting the past history of life upon the globe. According to the first of these hypotheses, living beings, such as now exist, have existed from all eternity upon this earth. We tested that hypothesis by the circumstantial evidence, as I called it, which is furnished by the fossil remains contained in the earth's crust, and we found that it was obviously untenable. I then proceeded to consider the second hypothesis, which I termed the Miltonic hypothesis, not because it is of any particular consequence whether John Milton seriously entertained it or not, but because it is stated in a clear and unmistakable manner in his great poem. I pointed out to you that the evidence at our command as completely and fully negatives that hypothesis as it did the preceding one. And I confess that I had too much respect for your intelligence to think it necessary to add that the negation was equally clear and equally valid, whatever the source from which that hypothesis might be derived, or whatever the authority by which it might be supported. I further stated that, according to the third hypothesis, or that of evolution, the existing state of things is the last term of a long series of states, which, when traced back, would be found to show no interruption and no breach in the continuity of natural causation. I propose, in the present and the following lecture, to test this hypothesis rigorously by the evidence at command, and to inquire how far that evidence can be said to be indifferent to it, how far it can be said to be favourable to it, and, finally, how far it can be said to be demonstrative.

From almost the origin of the discussions about the existing condition of the animal and vegetable worlds and the causes which have determined that condition, an argument has been put forward as an objection to evolution, which we shall have to consider very seriously. It is an argument which was first clearly stated by Cuvier in his criticism of the doctrines propounded by his great contemporary, Lamarck. The French expedition to Egypt had called the attention of learned men to the wonderful store of antiquities in that country, and there had been brought back to France numerous mummified corpses of the animals which the ancient Egyptians revered and preserved, and which, at a reasonable computation, must have lived not less than three or four thousand years before the time at which they were thus brought to light. Cuvier endeavoured to test the hypothesis that animals have undergone gradual and progressive modifications of structure, by comparing the skeletons and such other parts of the mummies as were in a fitting state of preservation, with the corresponding parts of the representatives of the same species now living in Egypt. He arrived at the conviction that no appreciable change had taken place in these animals in the course of this considerable lapse of time, and the justice of his conclusion is not disputed.

It is obvious that, if it can be proved that animals have endured, without undergoing any demonstrable change of structure, for so long a period as four thousand years, no form of the hypothesis of evolution which assumes that animals undergo a constant and necessary progressive change can be tenable; unless, indeed, it be further assumed that four thousand years is too short a time for the production of a change sufficiently great to be detected.

But it is no less plain that if the process of evolution of animals is not independent of surrounding conditions; if it may be indefinitely hastened or retarded by variations in these conditions; or if evolution is simply a process of accommodation to varying conditions; the argument against the hypothesis of evolution based on the unchanged character of the Egyptian fauna is worthless. For the monuments which are coeval with the mummies testify as strongly to the absence of change in the physical geography and the general conditions of the land of Egypt, for the time in question, as the mummies do to the unvarying characters of its living population.

The progress of research since Cuvier's time has supplied far more striking examples of the long duration of specific forms of life than those which are furnished by the mummified Ibises and Crocodiles of Egypt. A remarkable case is to be found in your own country, in the neighbourhood of the falls of Niagara. In the immediate vicinity of the whirlpool, and again upon Goat Island, in the superficial deposits which cover the surface of the rocky subsoil in those regions, there are found remains of animals in perfect preservation, and among them, shells belonging to exactly the same species as those which at present inhabit the still waters of Lake Erie. It is evident, from the structure of the country, that these animal remains were deposited in the beds in which they occur at a time when the lake extended over the region in which they are found. This involves the conclusion that they lived and died before the falls had cut their way back through the gorge of Niagara; and, indeed, it has been determined that, when these animals lived, the falls of Niagara must have been at least six miles further down the river than they are at present. Many computations have been made of the rate at which the falls are thus cutting their way back. Those computations have varied greatly, but I believe I am speaking within the bounds of prudence, if I assume that the falls of Niagara have not retreated at a greater pace than about a foot a year. Six miles, speaking roughly, are 30,000 feet; 30,000 feet, at a foot a year, gives 30,000 years; and thus we are fairly justified in concluding that no less a period than this has passed since the shell-fish, whose remains are left in the beds to which I have referred, were living creatures.

But there is still stronger evidence of the long duration of certain types. I have already stated that, as we work our way through the great series of the Tertiary formations, we find many species of animals identical with those which live at the present day, diminishing in numbers, it is true, but still existing, in a certain proportion, in the oldest of the Tertiary rocks. Furthermore, when we examine the rocks of the Cretaceous epoch, we find the remains of some animals which the closest scrutiny cannot show to be, in any important respect, different from those which live at the present time. That is the case with one of the cretaceous lamp-shells (Terebratula) which has continued to exist unchanged, or with insignificant variations, down to the present day. Such is the case with the Globigerinæ, the skeletons of which, aggregated together, form a large proportion of our English chalk. Those Globigerinæ can be traced down to the Globigerinæ which live at the surface of the present great oceans, and the remains of which, falling to the bottom of the sea give rise to a chalky mud. Hence it must be admitted that certain existing species of animals show no distinct sign of modification, or transformation, in the course of a lapse of time as great as that which carries us back to the Cretaceous period; and which, whatever its absolute measure, is certainly vastly greater than thirty thousand years.

There are groups of species so closely allied together, that it needs the eye of a naturalist to distinguish them one from another. If we disregard the small differences which separate these forms, and consider all the species of such groups as modifications of one type, we shall find that, even among the higher animals, some types have had a marvellous duration. In the chalk, for example, there is found a fish belonging to the highest and the most differentiated group of osseous fishes, which goes by the name of Beryx. The remains of that fish are among the most beautiful and well-preserved of the fossils found in our English chalk. It can be studied anatomically, so far as the hard parts are concerned, almost as well as if it were a recent fish. But the genus Beryx is represented, at the present day, by very closely allied species which are living in the Pacific and Atlantic Oceans. We may go still farther back. I have already referred to the fact, that the Carboniferous formations, in Europe and in America, contain the remains of scorpions in an admirable state of preservation and, that those scorpions are hardly distinguishable from such as now live. I do not mean to say that they are not different, but close scrutiny is needed in order to distinguish them from modern scorpions.

More than this. At the very bottom Of the Silurian series, in beds which are by some authorities referred to the Cambrian formation, where the signs of life begin to fail us—even there, among the few and scanty animal remains which are discoverable, we find species of molluscous animals which are so closely allied to existing forms that, at one time, they were grouped under the same generic name. I refer to the well known Lingula of the Lingula flags, lately, in consequence of some slight differences, placed in the new genus Lingulella. Practically, it belongs to the same great generic group as the Lingula, which is to be found at the present day upon your own shores and those of many other parts of the world.

The same truth is exemplified if we turn to certain great periods of the earth's history—as, for example, the Mesozoic epoch. There are groups of reptiles, such as the Ichthyosauria and the Plesiosauria, which appear shortly after the commencement of this epoch, and they occur in vast numbers. They disappear with the chalk and, throughout the whole of the great series of Mesozoic rocks, they present no such modifications as can safely be considered evidence of progressive modification.

Facts of this kind are undoubtedly fatal to any form of the doctrine of evolution which postulates the supposition that there is an intrinsic necessity, on the part of animal forms which have once come into existence, to undergo continual modification; and they are as distinctly opposed to any view which involves the belief, that such modification as may occur, must take place, at the same rate, in all the different types of animal or vegetable life. The facts, as I have placed them before you obviously directly contradict any form of the hypothesis of evolution which stands in need of these two postulates.

But, one great service that has been rendered by Mr. Darwin to the doctrine of evolution in general is this: he has shown that there are two chief factors in the process of evolution: one of them is the tendency to vary, the existence of which in all living forms may be proved by observation; the other is the influence of surrounding conditions upon what I may call the parent form and the variations which are thus evolved from it. The cause of the production of variations is a matter not at all properly understood at present. Whether variation depends upon some intricate machinery—if I may use the phrase—of the living organism itself, or whether it arises through the influence of conditions upon that form, is not certain, and the question may, for the present, be left open. But the important point is that granting the existence of the tendency to the production of variations; then, whether the variations which are produced shall survive and supplant the parent, or whether the parent form shall survive and supplant the variations, is a matter which depends entirely on those conditions which give rise to the struggle for existence. If the surrounding conditions are such that the parent form is more competent to deal with them, and flourish in them than the derived forms, then, in the struggle for existence, the parent form will maintain itself and the derived forms will be exterminated. But if, on the contrary, the conditions are such as to be more favourable to a derived than to the parent form, the parent form will be extirpated and the derived form will take its place. In the first case, there will be no progression, no change of structure, through any imaginable series of ages; in the second place there will be modification of change and form.

Thus the existence of these persistent types, as I have termed them, is no real obstacle in the way of the theory of evolution. Take the case of the scorpions to which I have just referred. No doubt, since the Carboniferous epoch, conditions have always obtained, such as existed when the scorpions of that epoch flourished; conditions in which scorpions find themselves better off, more competent to deal with the difficulties in their way, than any variation from the scorpion type which they may have produced; and, for that reason, the scorpion type has persisted, and has not been supplanted by any other form. And there is no reason, in the nature of things, why, as long as this world exists, if there be conditions more favourable to scorpions than to any variation which may arise from them, these forms of life should not persist.

Therefore, the stock objection to the hypothesis of evolution, based on the long duration of certain animal and vegetable types, is no objection at all. The facts of this character—and they are numerous—belong to that class of evidence which I have called indifferent. That is to say, they may afford no direct support to the doctrine of evolution, but they are capable of being interpreted in perfect consistency with it.

There is another order of facts belonging to the class of negative or indifferent evidence. The great group of Lizards, which abound in the present world, extends through the whole series of formations as far back as the Permian, or latest Palæozoic, epoch. These Permian lizards differ astonishingly little from the lizards which exist at the present day. Comparing the amount of the differences between them and modern lizards, with the prodigious lapse of time between the Permian epoch and the present age, it may be said that the amount of change is insignificant. But, when we carry our researches farther back in time, we find no trace of lizards, nor of any true reptile whatever, in the whole mass of formations beneath the Permian.

Now, it is perfectly clear that if our palæontological collections are to be taken, even approximately, as an adequate representation of all the forms of animals and plants that have ever lived; and if the record furnished by the known series of beds of stratified rock covers the whole series of events which constitute the history of life on the globe, such a fact as this directly contravenes the hypothesis of evolution; because this hypothesis postulates that the existence of every form must have been preceded by that of some form little different from it. Here, however, we have to take into consideration that important truth so well insisted upon by Lyell and by Darwin—the imperfection of the geological record. It can be demonstrated that the geological record must be incomplete, that it can only preserve remains found in certain favourable localities and under particular conditions; that it must be destroyed by processes of denudation, and obliterated by processes of metamorphosis. Beds of rock of any thickness, crammed full of organic remains, may yet, either by the percolation of water through them, or by the influence of subterranean heat, lose all trace of these remains, and present the appearance of beds of rock formed under conditions in which living forms were absent. Such metamorphic rocks occur in formations of all ages; and, in various cases, there are very good grounds for the belief that they have contained organic remains, and that those remains have been absolutely obliterated.

I insist upon the defects of the geological record the more because those who have not attended to these matters are apt to say, "It is all very well, but, when you get into a difficulty with your theory of evolution, you appeal to the incompleteness and the imperfection of the geological record;" and I want to make it perfectly clear to you that this imperfection is a great fact, which must be taken into account in all our speculations, or we shall constantly be going wrong.

You see the singular series of footmarks, drawn of its natural size in the large diagram hanging up here (Fig. 2), which I owe to the kindness of my friend Professor Marsh, with whom I had the opportunity recently of visiting the precise locality in Massachusetts in which these tracks occur. I am, therefore, able to give you my own testimony, if needed, that the diagram accurately represents what we saw. The valley of the Connecticut is classical ground for the geologist. It contains great beds of sandstone, covering many square miles, which have evidently formed a part of an ancient sea-shore, or, it may be, lake-shore. For a certain period of time after their deposition, these beds have remained sufficiently soft to receive the impressions of the feet of whatever animals walked over them, and to preserve them afterwards, in exactly the same way as such impressions are at this hour preserved on the shores of the Bay of Fundy and elsewhere. The diagram represents the track of some gigantic animal, which walked on its hind legs. You see the series of marks made alternately by the right and by the left foot; so that, from one impression to the other of the three-toed foot on the same side, is one stride, and that stride, as we measured it, is six feet nine inches. I leave you, therefore, to form an impression of the magnitude of the creature which, as it walked along the ancient shore, made these impressions.

FIG. 2.—TRACKS OF BRONTOZOUM.

Of such impressions there are untold thousands upon these sandstones. Fifty or sixty different kinds have been discovered, and they cover vast areas. But, up to this present time, not a bone, not a fragment, of any one of the animals which left these great footmarks has been found; in fact, the only animal remains which have been met with in all these deposits, from the time of their discovery to the present day—though they have been carefully hunted over—is a fragmentary skeleton of one of the smaller forms. What has become of the bones of all these animals? You see we are not dealing with little creatures, but with animals that make a step of six feet nine inches; and their remains must have been left somewhere. The probability is, that they have been dissolved away, and completely lost.

I have had occasion to work out the nature of fossil remains, of which there was nothing left except casts of the bones, the solid material of the skeleton having been dissolved out by percolating water. It was a chance, in this case, that the sandstone happened to be of such a constitution as to set, and to allow the bones to be afterward dissolved out, leaving cavities of the exact shape of the bones. Had that constitution been other than what it was, the bones would have been dissolved, the layers of sandstone would have fallen together into one mass, and not the slightest indication that the animal had existed would have been discoverable.

I know of no more striking evidence than these facts afford, of the caution which should be used in drawing the conclusion, from the absence of organic remains in a deposit, that animals or plants did not exist at the time it was formed. I believe that, with a right understanding of the doctrine of evolution on the one hand, and a just estimation of the importance of the imperfection of the geological record on the other, all difficulty is removed from the kind of evidence to which I have adverted; and that we are justified in believing that all such cases are examples of what I have designated negative or indifferent evidence—that is to say, they in no way directly advance the hypothesis of evolution, but they are not to be regarded as obstacles in the way of our belief in that doctrine.

I now pass on to the consideration of those cases which, for reasons which I will point out to you by and by, are not to be regarded as demonstrative of the truth of evolution, but which are such as must exist if evolution be true, and which therefore are, upon the whole, evidence in favour of the doctrine. If the doctrine of evolution be true, it follows, that, however diverse the different groups of animals and of plants may be, they must all, at one time or other, have been connected by gradational forms; so that, from the highest animals, whatever they may be, down to the lowest speck of protoplasmic matter in which life can be manifested, a series of gradations, leading from one end of the series to the other, either exists or has existed. Undoubtedly that is a necessary postulate of the doctrine of evolution. But when we look upon living Nature as it is, we find a totally different state of things. We find that animals and plants fall into groups, the different members of which are pretty closely allied together, but which are separated by definite, larger or smaller, breaks, from other groups. In other words, no intermediate forms which bridge over these gaps or intervals are, at present, to be met with.

To illustrate what I mean: Let me call your attention to those vertebrate animals which are most familiar to you, such as mammals, birds, and reptiles. At the present day, these groups of animals are perfectly well-defined from one another. We know of no animal now living which, in any sense, is intermediate between the mammal and the bird, or between the bird and the reptile; but, on the contrary, there are many very distinct anatomical peculiarities, well-defined marks, by which the mammal is separated from the bird, and the bird from the reptile. The distinctions are obvious and striking if you compare the definitions of these great groups as they now exist.

The same may be said of many of the subordinate groups, or orders, into which these great classes are divided. At the present time, for example, there are numerous forms of non-ruminant pachyderms, or what we may call broadly, the pig tribe, and many varieties of ruminants. These latter have their definite characteristics, and the former have their distinguishing peculiarities. But there is nothing that fills up the gap between the ruminants and the pig tribe. The two are distinct. Such also is the case in respect of the minor groups of the class of reptiles. The existing fauna shows us crocodiles, lizards, snakes, and tortoises; but no connecting link between the crocodile and lizard, nor between the lizard and snake, nor between the snake and the crocodile, nor between any two of these groups. They are separated by absolute breaks. If, then, it could be shown that this state of things had always existed, the fact would be fatal to the doctrine of evolution. If the intermediate gradations, which the doctrine of evolution requires to have existed between these groups, are not to be found anywhere in the records of the past history of the globe, their absence is a strong and weighty negative argument against evolution; while, on the other hand, if such intermediate forms are to be found, that is so much to the good of evolution; although for reasons which I will lay before you by and by, we must be cautious in our estimate of the evidential cogency of facts of this kind.

It is a very remarkable circumstance that, from the commencement of the serious study of fossil remains, in fact from the time when Cuvier began his brilliant researches upon those found in the quarries of Montmartre, palæontology has shown what she was going to do in this matter, and what kind of evidence it lay in her power to produce.

I said just now that, in the existing Fauna, the group of pig-like animals and the group of ruminants are entirely distinct; but one of the first of Cuvier's discoveries was an animal which he called the Anoplotherium, and which proved to be, in a great many important respects, intermediate in character between the pigs on the one hand, and the ruminants on the other Thus, research into the history of the past did, to a certain extent, tend to fill up the breach between the group of ruminants and the group of pigs. Another remarkable animal restored by the great French palæontologist, the Palæotherium, similarly tended to connect together animals to all appearance so different as the rhinoceros, the horse, and the tapir. Subsequent research has brought to light multitudes of facts of the same order; and, at the present day, the investigations of such anatomists as Rütimeyer and Gaudry have tended to fill up, more and more, the gaps in our existing series of mammals, and to connect groups formerly thought to be distinct.

But I think it may have an especial interest if, instead of dealing with these examples, which would require a great deal of tedious osteological detail, I take the case of birds and reptiles; groups which, at the present day, are so clearly distinguished from one another that there are perhaps no classes of animals which, in popular apprehension, are more completely separated. Existing birds, as you are aware, are covered with feathers; their anterior extremities, specially and peculiarly modified, are converted into wings, by the aid of which most of them are able to fly; they walk upright upon two legs; and these limbs, when they are considered anatomically, present a great number of exceedingly remarkable peculiarities, to which I may have occasion to advert incidentally as I go on, and which are not met with, even approximately, in any existing forms of reptiles. On the other hand, existing reptiles have no feathers. They may have naked skins, or be covered with horny scales, or bony plates, or with both. They possess no wings; they neither fly by means of their fore-limbs, nor habitually walk upright upon their hind-limbs; and the bones of their legs present no such modifications as we find in birds. It is impossible to imagine any two groups more definitely and distinctly separated, notwithstanding certain characters which they possess in common.

As we trace the history of birds back in time, we find their remains, sometimes in great abundance, throughout the whole extent of the tertiary rocks; but, so far as our present knowledge goes, the birds of the tertiary rocks retain the same essential characters as the birds of the present day. In other words, the tertiary birds come within the definition of the class constituted by existing birds, and are as much separated from reptiles as existing birds are. Not very long ago no remains of birds had been found below the tertiary rocks, and I am not sure but that some persons were prepared to demonstrate that they could not have existed at an earlier period. But, in the course of the last few years, such remains have been discovered in England; though, unfortunately, in so imperfect and fragmentary a condition, that it is impossible to say whether they differed from existing birds in any essential character or not. In your country the development of the cretaceous series of rocks is enormous; the conditions under which the later cretaceous strata have been deposited are highly favourable to the preservation of organic remains; and the researches, full of labour and risk, which have been carried on by Professor Marsh in these cretaceous rocks of Western America, have rewarded him with the discovery of forms of birds of which we had hitherto no conception. By his kindness, I am enabled to place before you a restoration of one of these extraordinary birds, every part of which can be thoroughly justified by the more or less complete skeletons, in a very perfect state of preservation, which he has discovered. This Hesperornis (Fig. 3), which measured between five and six feet in length, is astonishingly like our existing divers or grebes in a great many respects; so like them indeed that, had the skeleton of Hesperornis been found in a museum without its skull, improbably would have been placed in the same group of birds as the divers and grebes of the present day.[1] But Hesperornis differs from all existing birds, and so far resembles reptiles, in one important particular—it is provided with teeth. The long jaws are armed with teeth which have curved crowns and thick roots (Fig. 4), and are not set in distinct sockets, but are lodged in a groove. In possessing true teeth, the Hesperornis differs from every existing bird, and from every bird yet discovered in the tertiary formations, the tooth-like serrations of the jaws in the Odontopteryx of the London clay being mere processes of the bony substance of the jaws, and not teeth in the proper sense of the word. In view of the characteristics of this bird we are therefore obliged to modify the definitions of the classes of birds and reptiles. Before the discovery of Hesperornis, the definition of the class Aves based upon our knowledge of existing birds might have been extended to all birds; it might have been said that the absence of teeth was characteristic of the class of birds; but the discovery of an animal which, in every part of its skeleton, closely agrees with existing birds, and yet possesses teeth, shows that there were ancient birds, which, in respect of possessing teeth, approached reptiles more nearly than any existing bird does, and, to that extent, diminishes the hiatus between the two classes.

Lectures and Essays

Подняться наверх