Читать книгу The History of Chemistry - Thomas Thomson - Страница 20

CHAPTER III. CHEMISTRY OF THE ARABIANS.

Оглавление

Table of Contents

Hitherto I have spoken of Alchymy, or of the chemical manufactures of the ancients. The people to whom scientific chemistry owes its origin are the Arabians. Not that they prosecuted scientific chemistry themselves; but they were the first persons who attempted to form chemical medicines. This they did by mixing various bodies with each other, and applying heat to the mixture in various ways. This led to the discovery of some of the mineral acids. These they applied to the metals, &c., and ascertained the effects produced upon that most important class of bodies. Thus the Arabians began those researches which led gradually to the formation of scientific chemistry. We must therefore endeavour to ascertain the chemical facts for which we are indebted to the Arabians.

When Mahomet first delivered his dogmas to his countrymen they were not altogether barbarous. Possessed of a copious and expressive language, and inhabiting a burning climate, their imaginations were lively and their passions violent. Poetry and fiction were cultivated by them with ardour, and with considerable success. But science and inductive philosophy, had made little or no progress among them. The fatalism introduced by Mahomet, and the blind enthusiasm which he inculcated, rendered them furious bigots and determined enemies to every kind of intellectual improvement. The rapidity with which they overran Asia, Africa, and even a portion of Europe, is universally known. At that period the western world, was sunk into extreme barbarism, and the Greeks, with whom the remains of civilization still lingered, were sadly degenerated from those sages who graced the classic ages. Bent to the earth under the most grinding but turbulent despotism that ever disgraced mankind, and having their understandings sealed up by the most subtle and absurd, and uncompromising superstition, all the energy of mind, all the powers of invention, all the industry and talent, which distinguished their ancestors, had completely forsaken them. Their writers aimed at nothing new or great, and were satisfied with repeating the scientific facts determined by their ancestors. The lamp of science fluttered in its socket, and was on the eve of being extinguished.

Nothing good or great could be expected from such a state of society. It was, therefore, wisely determined by Providence that the Mussulman conquerors, should overrun the earth, sweep out those miserable governors, and free the wretched inhabitants from the trammels of despotism and superstition. As a despotism not less severe, and a superstition still more gloomy and uncompromising, was substituted in their place, it may seem at first sight, that the conquests of the Mahometans brought things into a worse state than they found them. But the listless inactivity, the almost deathlike torpor which had frozen the minds of mankind, were effectually roused. The Mussulmans displayed a degree of energy and activity which have few parallels in the history of the world: and after the conquests of the Mahometans were completed, and the Califs quietly seated upon the greatest and most powerful throne that the world had ever seen; after Almanzor, about the middle of the eighth century, had founded the city of Bagdad, and settled a permanent and flourishing peace, the arts and sciences, which usually accompany such a state of society, began to make their appearance.

That calif founded an academy at Bagdad, which acquired much celebrity, and gradually raised itself above all the other academies in his dominions. A medical college was established there with powers to examine all those persons who intended to devote themselves to the medical profession. So many professors and pupils flocked to this celebrated college, from all parts of the world, that at one time their number amounted to no fewer than six thousand. Public hospitals and laboratories were established to facilitate a knowledge of diseases, and to make the students acquainted with the method of preparing medicines. It was this last establishment which originated with the califs that gave a first beginning to the science of chemistry.

In the thirteenth century the calif Mostanser re-established the academy and the medical college at Bagdad: for both had fallen into decay, and had been replaced by an infinite number of Jewish seminaries. Mostanser gave large salaries to the professors, collected a magnificent library, and established a new school of pharmacy. He was himself often present at the public lectures.

The successor of Mostanser was the calif Haroun-Al-Raschid, the perpetual hero of the Arabian tales. He not only carried his love for the sciences further than his predecessors, but displayed a liberality and a tolerance for religious opinions, which was not quite consistent with Mahometan bigotry and superstition. He drew round him the Syrian Christians, who translated the Greek classics, rewarded them liberally, and appointed them instructors of his Mahometan subjects, especially in medicine and pharmacy. He protected the Christian school of Dschondisabour, founded by the Nestorian Christians, before the time of Mahomet, and still continuing in a flourishing state: always surrounded by literary men, he frequently condescended to take a part in their discussions, and not unfrequently, as might have been expected from his rank, came off victorious.

The most enlightened of all the califs was Almamon, who has rendered his name immortal by his exertions in favour of the sciences. It was during his reign that the Arabian schools came to be thoroughly acquainted with Greek science; he procured the translation of a great number of important works. This conduct inflamed the religious zeal of the faithful, who devoted him to destruction, and to the divine wrath, for favouring philosophy, and in that way diminishing the authority of the Koran. Almamon purchased the ancient classics, from all quarters, and recommended the care of doing so in a particular manner to his ambassadors at the court of the Greek emperors. To Leo, the philosopher, he made the most advantageous offers, to induce him to come to Bagdad; but that philosopher would not listen to his invitation. It was under the auspices of this enlightened prince, that the celebrated attempt was made to determine the size of the earth by measuring a degree of the meridian. The result of this attempt it does not belong to this work to relate.

Almotassem and Motawakkel, who succeeded Almamon, followed his example, favoured the sciences, and extended their protection to men of science who were Christians. Motawakkel re-established the celebrated academy and library of Alexandria. But he acted with more severity than his predecessors with regard to the Christians, who may perhaps have abused the tolerance which they enjoyed.

The other vicars of the prophet, in the different Mahometan states, followed the fine example set them by Almamon. Already in the eighth century the sovereigns of Mogreb and the western provinces of Africa showed themselves the zealous friends of the sciences. One of them called Abdallah-Ebn-Ibadschab rendered commerce and industry flourishing at Tunis. He himself cultivated poetry and drew numerous artists and men of science into his state. At Fez and in Morocco the sciences flourished, especially during the reign of the Edrisites, the last of whom, Jahiah, a prince possessed of genius, sweetness, and goodness, changed his court into an academy, and paid attention to those only who had distinguished themselves by their scientific knowledge.

But Spain was the most fortunate of all the Mahometan states, and had arrived at such a degree of prosperity both in commerce, manufactures, population, and wealth, as is hardly to be credited. The three Abdalrahmans and Alhakem carried, from the eighth to the tenth century, the country subject to the Calif of Cordova to the highest degree of splendour. They protected the sciences, and governed with so much mildness, that Spain was probably never so happy under the dominion of any Christian prince. Alhakem established at Cordova an academy, which for several ages was the most celebrated in the whole world. All the Christians of Western Europe repaired to this academy in search of information. It contained, in the tenth century, a library of 280,000 volumes. The catalogue of this library filled no less than forty-four volumes. Seville, Toledo, and Murcia, had likewise their schools of science and their libraries, which retained their celebrity as long as the dominion of the Moors lasted. In the twelfth century there were seventy public libraries in that part of Spain which belonged to the Mahometans. Cordova had produced one hundred and fifty authors, Almeria fifty-two, and Murcia sixty-two.

The Mahometan states of the east continued also to favour the sciences. An emir of Irak, Adad-El-Daula by name, distinguished himself towards the end of the tenth century by the protection which he afforded to men of science. To him almost all the philosophers of the age dedicated their works. Another emir of Irak, Saif-Ed-Daula, established schools at Kufa and at Bussora, which soon acquired great celebrity. Abou-Mansor-Baharam, established a public library at Firuzabad in Curdistan, which at its very commencement contained 7000 volumes. In the thirteenth century there existed a celebrated school of medicine in Damascus. The calif Malek-Adel endowed it richly, and was often present at the lectures with a book under his arm.

Had the progress of the sciences among the Arabians been proportional to the number of those who cultivated them, we might hail the Saracens as the saviours of literature during the dark and benighted ages of Christianity; but we must acknowledge with regret, that notwithstanding the enlightened views of the califs, notwithstanding the multiplicity of academies and libraries, and the prodigious number of writers, the sciences received but little improvement from the Arabians. There are very few Arabian writers in whose works we find either philosophical ideas, successful researches, new facts, or great and new and important truths. How, indeed, could such things be expected from a people naturally hostile to mental exertion; professing a religion which stigmatizes all exercise of the judgment as a crime, and weighed down by the heavy yoke of despotism? It was the religion of the Arabians, and the despotism of their princes, that opposed the greatest obstacles to the progress of the sciences, even during the most flourishing period of their civilization.103 Fortunately chemistry was the branch of science least obnoxious to the religious prejudices of the Mahometans. It was in it, therefore, that the greatest improvements were made: of these improvements it will be requisite now to endeavour to give the reader some idea. Astrology and alchymy, they both derived from the Greeks: neither of them were inconsistent with the taste of the nation—neither of them were anathematized by the Mahometan creed, though Islamism prohibited magic and all the arts of divination. Alchymy may have suggested the chemical processes—but the Arabians applied them to the preparation of medicines, and thus opened a new and most copious source of investigation.

The chemical writings of the Arabians which I have had an opportunity of seeing and perusing in a Latin dress, being ignorant of the original language in which they were written, are those of Geber and Avicenna.

Geber, whose real name was Abou-Moussah-Dschafar-Al-Soli, was a Sabean of Harran, in Mesopotamia, and lived during the eighth century. Very little is known respecting the history of this writer, who must be considered as the patriarch of chemistry. Golius, professor of the oriental languages in the University of Leyden, made a present of Geber’s work in manuscript to the public library. He translated it into Latin, and published it in the same city in folio, and afterwards in quarto, under the title of “Lapis Philosophorum.”104 It was translated into English by Richard Russel in 1678, under the title of, “The Works of Geber, the most famous Arabian Prince and Philosopher.”105 The works of Geber, so far as they appeared in Latin or English, consist of four tracts. The first is entitled, “Of the Investigation or Search of Perfection.” The second is entitled, “Of the Sum of Perfection, or of the perfect Magistery.” The third, “Of the Invention of Verity or Perfection.” And the last, “Of Furnaces, &c.; with a Recapitulation of the Author’s Experiments.”

The object of Geber’s work is to teach the method of making the philosopher’s stone, which he distinguishes usually by the name of medicine of the third class. The whole is in general written with so much plainness, that we can understand the nature of the substances which he employed, the processes which he followed, and the greater number of the products which he obtained. It is, therefore, a book of some importance, because it is the oldest chemical treatise in existence,106 and because it makes us acquainted with the processes followed by the Arabians, and the progress which they had made in chemical investigations. I shall therefore lay before the reader the most important facts contained in Geber’s work.

1. He considered all the metals as compounds of mercury and sulphur: this opinion did not originate with him. It is evident from what he says, that the same notion had been adopted by his predecessors—men whom he speaks of under the title of the ancients.

2. The metals with which he was acquainted were gold, silver, copper, iron, tin, and lead. These are usually distinguished by him under the names of Sol, Luna, Venus, Mars, Jupiter, and Saturn. Whether these names of the planets were applied to the metals by Geber, or only by his translators, I cannot say; but they were always employed by the alchymists, who never designated the metals by any other appellations.

3. Gold and silver he considered as perfect metals; but the other four were imperfect metals. The difference between them depends, in his opinion, partly upon the proportions of mercury and sulphur in each, and partly upon the purity or impurity of the mercury and sulphur which enters into the composition of each.

Gold, according to him, is created of the most subtile substance of mercury and of most clear fixture, and of a small substance of sulphur, clean and of pure redness, fixed, clear, and changed from its own nature, tinging that; and because there happens a diversity in the colours of that sulphur, the yellowness of gold must needs have a like diversity.107 His evidence that gold consisted chiefly of mercury, is the great ease with which mercury dissolves gold. For mercury, in his opinion, dissolves nothing that is not of its own nature. The lustre and splendour of gold is another proof of the great proportion of mercury which it contains. That it is a fixed substance, void of all burning sulphur, he thinks evident by every operation in the fire, for it is neither diminished nor inflamed. His other reasons are not so intelligible.108

Silver, like gold, is composed of much mercury and a little sulphur; but in the gold the sulphur is red; whereas the sulphur that goes to the formation of silver is white. The sulphur in silver is also clean, fixed, and clear. Silver has a purity short of that of gold, and a more gross inspissation. The proof of this is, that its parts are not so condensed, nor is it so fixed as gold; for it may be diminished by fire, which is not the case with gold.109

Iron is composed of earthy mercury and earthy sulphur, highly fixed, the latter in by far the greatest quantity. Sulphur, by the work of fixation, more easily destroys the easiness of liquefaction than mercury. Hence the reason why iron is not fusible, as is the case with the other metals.110

Sulphur not fixed melts sooner than mercury; but fixed sulphur opposes fusion. What contains more fixed sulphur, more slowly admits of fusion than what partakes of burning sulphur, which more easily and sooner flows.111

Copper is composed of sulphur unclean, gross and fixed as to its greater part; but as to its lesser part not fixed, red, and livid, in relation to the whole not overcoming nor overcome and of gross mercury.112

When copper is exposed to ignition, you may discern a sulphureous flame to arise from it, which is a sign of sulphur not fixed; and the loss of the quantity of it by exhalation through the frequent combustion of it, shows that it has fixed sulphur. This last being in abundance, occasions the slowness of its fusion and the hardness of its substance. That copper contains red and unclean sulphur, united to unclean mercury, is, he thinks, evident, from its sensible qualities.113

Tin consists of sulphur of small fixation, white with a whiteness not pure, not overcoming but overcome, mixed with mercury partly fixed and partly not fixed, white and impure.114 That this is the constitution of tin he thinks evident; for when calcined, it emits a sulphureous stench, which is a sign of sulphur not fixed: it yields no flame, not because the sulphur is fixed, but because it contains a great portion of mercury. In tin there is a twofold sulphur and also a twofold mercury. One sulphur is less fixed, because in calcining it gives out a stench as sulphur. The fixed sulphur continues in the tin after it is calcined. He thinks that the twofold mercury in tin is evident, from this, that before calcination it makes a crashing noise when bent, but after it has been thrice calcined, that crashing noise can no longer be perceived.115 Geber says, that if lead be washed with mercury, and after its washing melted in a fire not exceeding the fire of its fusion, a portion of the mercury will remain combined with the lead, and will give it the crashing noise and all the qualities of tin. On the other hand, you may convert tin into lead. By manifold repetition of its calcination, and the administration of fire convenient for its reduction, it is turned into lead.116

Lead, in Geber’s opinion, differs from tin only in having a more unclean substance commixed of the two more gross substances, sulphur and mercury. The sulphur in it is burning and more adhesive to the substance of its own mercury, and it has more of the substance of fixed sulphur in its composition than tin has.117

Such are the opinions which Geber entertained respecting the composition of the metals. I have been induced to state them as nearly in his own words as possible, and to give the reasons which he has assigned for them, even when his facts were not quite correct, because I thought that this was the most likely way of conveying to the reader an accurate notion of the sentiments of this father of the alchymists, upon the very foundation of the whole doctrine of the transmutation of metals. He was of opinion that all the imperfect metals might be transformed into gold and silver, by altering the proportions of the mercury and sulphur of which they are composed, and by changing the nature of the mercury and sulphur so as to make them the same with the mercury and sulphur which constitute gold and silver. The substance capable of producing these important changes he calls sometimes the philosopher’s stone, but generally the medicine. He gives the method of preparing this important magistery, as he calls it. But it is not worth while to state his process, because he leaves out several particulars, in order to prevent the foolish from reaping any benefit from his writings, while at the same time those readers who possess the proper degree of sagacity will be able, by studying the different parts of his writings, to divine the nature of the steps which he omits, and thus profit by his researches and explanations. But it will be worth while to notice the most important of his processes, because this will enable us to judge of the state of chemistry in his time.

4. In his book on furnaces, he gives a description of a furnace proper for calcining metals, and from the fourteenth chapter of the fourth part of the first book of his Sum of Perfection, it is obvious that the method of calcining or oxidizing iron, copper, tin, and lead, and also mercury and arsenic were familiarly known to him.

He gives a description of a furnace for distilling, and a pretty minute account of the glass or stoneware, or metallic aludel and alembic, by means of which the process was conducted. He was in the habit of distilling by surrounding his aludel with hot ashes, to prevent it from being broken. He was acquainted also with the water-bath. These processes were familiar to him. The description of the distillation of many bodies occurs in his work; but there is not the least evidence that he was acquainted with ardent spirits. The term spirit occurs frequently in his writings, but it was applied to volatile bodies in general, and in particular to sulphur and white arsenic, which he considered as substances very similar in their properties. Mercury also he considered as a spirit.

The method of distilling per descensum, as is practised in the smelting of zinc, was also known to him. He describes an apparatus for the purpose, and gives several examples of such distillations in his writings.

He gives also a description of a furnace for melting metals, and mentions the vessels in which such processes were conducted. He was acquainted with crucibles; and even describes the mode of making cupels, nearly similar to those used at present. The process of cupellating gold and silver, and purifying them by means of lead, is given by him pretty minutely and accurately: he calls it cineritium, or at least that is the term used by his Latin translator.

He was in the habit of dissolving salts in water and acetic acid, and even the metals in different menstrua. Of these menstrua he nowhere gives any account; but from our knowledge of the properties of the different metals, and from some processes which he notices, it is easy to perceive what his solvents must have been; namely, the mineral acids which were known to him, and to which there is no allusion whatever in any preceding writer that I have had an opportunity of consulting. Whether Geber was the discoverer of these acids cannot be known, as he nowhere claims the discovery: indeed his object was to slur over these acids, as much as possible, that their existence, or at least their remarkable properties, might not be suspected by the uninitiated. It was this affectation of secrecy and mystery that has deprived the earliest chemists of that credit and reputation to which they would have been justly entitled, had their discoveries been made known to the public in a plain and intelligible manner.

The mode of purifying liquids by filtration, and of separating precipitates from liquids by the same means, was known to Geber. He called the process distillation through a filter.

Thus the greater number of chemical processes, such as they were practised almost to the end of the eighteenth century, were known to Geber. If we compare his works with those of Dioscorides and Pliny, we shall perceive the great progress which chemistry or rather pharmacy had made. It is more than probable that these improvements were made by the Arabian physicians, or at least by the physicians who filled the chairs in the medical schools, which were under the protection of the califs: for as no notice is taken of these processes by any of the Greek or Roman writers that have come down to us, and as we find them minutely described by the earliest chemical writers among the Arabians, we have no other alternative than to admit that they originated in the east.

I shall now state the different chemical substances or preparations which were known to Geber, or which he describes the method of preparing in his works.

1. Common salt. This substance occurring in such abundance in the earth, and being indispensable as a seasoner of food, was known from the earliest ages. But Geber describes the method which he adopted to free it from impurities. It was exposed to a red heat, then dissolved in water, filtered, crystallized by evaporation, and the crystals being exposed to a red heat, were put into a close vessel, and kept for use.118 Whether the identity of sal-gem (native salt) and common salt was known to Geber is nowhere said. Probably not, as he gives separate directions for purifying each.

2. Geber gives an account of the two fixed alkalies, potash and soda, and gives processes for obtaining them. Potash was obtained by burning cream of tartar in a crucible, dissolving the residue in water, filtering the solution, and evaporating to dryness.119 This would yield a pure carbonate of potash.

Carbonate of soda he calls sagimen vitri, and salt of soda. He mentions plants which yield it when burnt, points out the method of purifying it, and even describes the method of rendering it caustic by means of quicklime.120

3. Saltpetre, or nitrate of potash, was known to him; and Geber is the first writer in whom we find an account of this salt. Nothing is said respecting its origin; but there can be little doubt that it came from India, where it was collected, and known long before Europeans were acquainted with it. The knowledge of this salt was probably one great cause of the superiority of the Arabians over Europeans in chemical knowledge; for it enabled them to procure nitric acid, by means of which they dissolved all the metals known in their time, and thus acquired a knowledge of various important saline compounds, which were of considerable importance.

There is a process for preparing saltpetre artificially, in several of the Latin copies of Geber, though it does not appear in our English translation. The method was to dissolve sagimen vitri, or carbonate of soda, in aqua fortis, to filter and crystallize by evaporation.121 If this process be genuine, it is obvious that Geber must have been acquainted with nitrate of soda; but I have some doubts about the genuineness of the passage, because the term aqua fortis occurs in it. Now this term occurs nowhere else in Geber’s work: even when he gives the process for procuring nitric acid, he calls it simply water; but observes, that it is a water possessed of much virtue, and that it constitutes a precious instrument in the hands of the man who possesses sagacity to use it aright.

4. Sal ammoniac was known to Geber, and seems to have been quite common in his time. There is no evidence that it was known to the Greeks or Romans, as neither Dioscorides nor Pliny make any allusion to it. The word in old books is sometimes sal armoniac, sometimes sal ammoniac. It is supposed to have been brought originally from the neighbourhood of the temple of Jupiter Ammon: but had this been the case, and had it occurred native, it could scarcely have been unknown to the Romans, under whose dominions that part of Africa fell. In the writings of the alchymists, sal ammoniac is mentioned under the following whimsical names:

Anima sensibilis,

Aqua duorum fratrum ex sorore,

Aquila,

Lapis aquilinis,

Cancer,

Lapis angeli conjungentis,

Sal lapidum,

Sal alocoph.

Geber not only knew sal ammoniac, but he was aware of its volatility; and gives various processes for subliming it, and uses it frequently to promote the sublimation of other bodies, as of oxides of iron and copper. He gives also a method of procuring it from urine, a liquid which, when allowed to run into putrefaction, is known to yield it in abundance. Sal ammoniac was much used by Geber, in his various processes to bring the inferior metals to a state of greater perfection. By adding it or common salt to aqua fortis, he was enabled to dissolve gold, which certainly could not be accomplished in the time of Dioscorides or Pliny. The description, indeed, of Geber’s process for dissolving gold is left on purpose in a defective state; but an attentive reader will find no great difficulty in supplying the defects, and thus understanding the whole of the process.

5. Alum, precisely the same as the alum of the moderns, was familiarly known to Geber, and employed by him in his processes. The manufacture of this salt, therefore, had been discovered between the time when Pliny composed his Natural History and the eighth century, when Geber wrote; unless we admit that the mode of making it had been known to the Tyrian dyers, but that they had kept the secret so well, that no suspicion of its existence was entertained by the Greeks and Romans. That they employed alumina as a mordant in some of their dyes, is evident; but there is no proof whatever that alum, in the modern sense of the word, was known to them.

Geber mentions three alums which he was in the habit of using; namely, icy alum, or Rocca alum; Jamenous alum, or alum of Jameni, and feather alum. Rocca, or Edessa, in Syria, is admitted to have been the place where the first manufactory of alum was established; but at what time, or by whom, is quite unknown: we know only that it must have been posterior to the commencement of the Christian era, and prior to the eighth century, when Geber wrote. Jameni must have been another locality where, at the time of Geber, a manufactory of alum existed. Feather alum was undoubtedly one of the native impure varieties of alum, known to the Greeks and Romans. Geber was in the habit of distilling alum by a strong heat, and of preserving the water which came over as a valuable menstruum. If alum be exposed to a red heat in glass vessels, it will give out a portion of sulphuric acid: hence water distilled from alum by Geber was probably a weak solution of sulphuric acid, which would undoubtedly act powerfully as a solvent of iron, and of the alkaline carbonates. It was probably in this way that he used it.

6. Sulphate of iron or copperas, as it is called (cuperosa), in the state of a crystalline salt, was well known to Geber, and appears in his time to have been manufactured.

7. Baurach, or borax, is mentioned by him, but without any description by which we can know whether or not it was our borax: the probability is that it was. Both glass and borax were used by him when the oxides of metals were reduced by him to the metallic state.

8. Vinegar was purified by him by distilling it over, and it was used as a solvent in many of his processes.

9. Nitric acid was known to him by the name of dissolving water. He prepared it by putting into an alembic one pound of sulphate of iron of Cyprus, half a pound of saltpetre, and a quarter of a pound of alum of Jameni: this mixture was distilled till every thing liquid was driven over. He mentions the red fumes which make their appearance in the alembic during the process.122 This process, though not an economical one, would certainly yield nitric acid; and it is remarkable, because it is here that we find the first hint of the knowledge of chemists of this most important acid, without which many chemical processes of the utmost importance could not be performed at all.

10. This acid, thus prepared, he made use of to dissolve silver: the solution was concentrated till the nitrate of silver was obtained by him in a crystallized state. This process is thus described by him: “Dissolve silver calcined in solutive water (nitric acid), as before; which being done, coct it in a phial with a long neck, the orifice of which must be left unstopped, for one day only, until a third part of the water be consumed. This being effected, set it with its vessel in a cold place, and then it is converted into small fusible stones, like crystal.”123

11. He was in the habit also of dissolving sal ammoniac in this nitric acid, and employing the solution, which was the aqua regia of the old chemists, to dissolve gold.124 He assures us that this aqua regia would dissolve likewise sulphur and silver. The latter assertion is erroneous. But sulphur is easily converted into sulphuric acid by the action of aqua regia, and of course it disappears or dissolves.

12. Corrosive sublimate is likewise described by Geber in a very intelligible manner. His method of preparing it was as follows: “Take of mercury one pound, of dried sulphate of iron two pounds, of alum calcined one pound, of common salt half a pound, and of saltpetre a quarter of a pound: incorporate altogether by trituration and sublime; gather the white, dense, and ponderous portions which shall be found about the sides of the vessel. If in the first sublimation you find it turbid or unclean (which may happen by reason of your own negligence), sublime a second time with the same fuses.”125 Still more minute directions are given in other parts of the work: we have even some imperfect account of the properties of corrosive sublimate.

13. Corrosive sublimate is not the only preparation of mercury mentioned by Geber. He informs us that when mercury is combined with sulphur it assumes a red colour, and becomes cinnabar.126 He describes the affinities of mercury for the different metals. It adheres easily to three metals; namely, lead, tin, and gold; to silver with more difficulty. To copper with still more difficulty than to silver; but to iron it unites in nowise unless by artifice.127 This is a tolerably accurate account of the matter. He says, that mercury is the heaviest body in nature except gold, which is the only metal that will sink in it.128 Now this was true, applied to all the substances known when Geber lived.

He gives an account of the method of forming the peroxide of mercury by heat; that variety of it formerly distinguished by the name of red precipitati per se. “Mercury,” he says, “is also coagulated by long and constant retention in fire, in a glass vessel with a very long neck and round belly; the orifice of the neck being kept open, that the humidity may vanish thereby.”129 He gives another process for preparing this oxide, possible, perhaps, though certainly requiring very cautious regulation of the fire. “Take,” says he, “of mercury one pound, of vitriol (sulphate of iron) rubified two pounds, and of saltpetre one pound. Mortify the mercury with these, and then sublime it from rock alum and saltpetre in equal weights.”130

14. Geber was acquainted with several of the compounds of metals with sulphur. He remarks that sulphur when fused with metals increases their weight.131 Copper combined with sulphur becomes yellow, and mercury red.132 He knew the method of dissolving sulphur in caustic potash, and again precipitating it by the addition of an acid. His process is as follows: “Grind clear and gummose sulphur to a most subtile powder, which boil in a lixivium made of ashes of heartsease and quicklime, gathering from off the surface its oleaginous combustibility, until it be discerned to be clear. This being done, stir the whole with a stick, and then warily take off that which passeth out with the lixivium, leaving the more gross parts in the bottom. Permit that extract to cool a little, and upon it pour a fourth part of its own quantity of distilled vinegar, and then will the whole suddenly be congealed as milk. Remove as much of the clear lixivium as you can; but dry the residue with a gentle fire and keep it.”133

15. It would appear from various passages in Geber’s works that he was acquainted with arsenic in the metallic state. He frequently mentions its combustibility, and considers it as the compeer of sulphur. And in his book on Furnaces, chapter 25 (or 28 in some copies), he expressly mentions metallic arsenic (arsenicum metallinum), in a preparation not very intelligible, but which he considered of great importance. The white oxide of arsenic or arsenious acid, was obviously well known to him. He gives more than one process for obtaining it by sublimation.134 He observes in his Sum of Perfection, book i. part iv. chap. 2, which treats of sublimation, “Arsenic, which before its sublimation was evil and prone to adustion, after its sublimation, suffers not itself to be inflamed; but only resides without inflammation.”

Geber states the fact, that when arsenic is heated with copper that metal becomes white.135 He gives also a process by which the white arseniate of iron is obviously made. “Grind one pound of iron filings with half a pound of sublimed arsenic (arsenious acid). Imbibe the mixture with the water of saltpetre, and salt-alkali, repeating this imbibation thrice. Then make it flow with a violent fire, and you will have your iron white. Repeat this labour till it flow sufficiently with peculiar dealbation.”136

16. He mentions oxide of copper under the name of æs ustum, the red oxide of iron under the name of crocus of iron. He mentions also litharge and red lead.137 But as all these substances were known to the Greeks and Romans, it is needless to enter into any particular details.

17. I am not sure what substance Geber understood by the word marchasite. It was a substance which must have been abundant, and in common use, for he refers to it frequently, and uses it in many of his processes; but he nowhere informs us what it is. I suspect it may have been sulphuret of antimony, which was certainly in common use in Asia long before the time of Geber. But he also makes mention of antimony by name, or at least the Latin translator has made use of the word antimonium. When speaking of the reduction of metals after heating them with sulphur, he says, “The reduction of tin is converted into clear antimony; but of lead, into a dark-coloured antimony, as we have found by proper experience.”138 It is not easy to conjecture what meaning the word antimony is intended to convey in this passage. In another passage he says, “Antimony is calcined, dissolved, clarified, congealed, and ground to powder, so it is prepared.”139

18. Geber’s description of the metals is tolerably accurate, considering the time when he wrote. As an example I shall subjoin his account of gold. “Gold is a metallic body, yellow, ponderous, mute, fulged, equally digested in the bowels of the earth, and very long washed with mineral water; under the hammer extensible, fusible, and sustaining the trial of the cupel and cementation.”140 He gives an example of copper being changed into gold. “In copper-mines,” he says, “we see a certain water which flows out, and carries with it thin scales of copper, which (by a continual and long-continued course) it washes and cleanses. But after such water ceases to flow, we find these thin scales with the dry sand, in three years time to be digested with the heat of the sun; and among these scales the purest gold is found: therefore we judge those scales were cleansed by the benefit of the water, but were equally digested by heat of the sun, in the dryness of the sand, and so brought to equality.”141 Here we have an example of plausible reasoning from defective premises. The gold grains doubtless existed in the sand before, while the scales of copper in the course of three years would be oxidized and converted into powder, and disappear, or at least lose all their metallic lustre.

Such are the most remarkable chemical facts which I have observed in the works of Geber. They are so numerous and important, as to entitle him with some justice to the appellation of the father and founder of chemistry. Besides the metals, sulphur and salt, with which the Greeks and Romans were acquainted, he knew the method of preparing sulphuric acid, nitric acid, and aqua regia. He knew the method of dissolving the metals by means of these acids, and actually prepared nitrate of silver and corrosive sublimate. He was acquainted with potash and soda, both in the state of carbonates and caustic. He was aware that these alkalies dissolve sulphur, and he employed the process to obtain sulphur in a state of purity.

But notwithstanding the experimental merit of Geber, his spirit of philosophy did not much exceed that of his countrymen. He satisfied himself with accounting for phenomena by occult causes, as was the universal custom of the Arabians; a practice quite inconsistent with real scientific progress. That this was the case will appear from the following passage, in which Geber attempts to give an explanation of the properties of the great elixir or philosopher’s stone: “Therefore, let him attend to the properties and ways of action of the composition of the greater elixir. For we endeavour to make one substance, yet compounded and composed of many, so permanently fixed, that being put upon the fire, the fire cannot injure; and that it may be mixed with metals in flux and flow with them, and enter with that which in them is of an ingressible substance, and be fermented with that which in them is of a permixable substance; and be consolidated with that which in them is of a consolidable substance; and be fixed with that which in them is of a fixable substance; and not be burnt by those things which burn not gold and silver; and take away consolidation and weights with due ignition.”142

The next Arabian whose name I shall introduce into this history, is Al-Hassain-Abou-Ali-Ben-Abdallah-Ebn-Sina, surnamed Scheik Reyes, or prince of physicians, vulgarly known by the name of Avicenna. Next to Aristotle and Galen, his reputation was the highest, and his authority the greatest of all medical practitioners; and he reigned paramount, or at least shared the medical sceptre till he was hurled from his throne by the rude hands of Paracelsus.

Avicenna was born in the year 978, at Bokhara, to which place his father had retired during the emirate of the calif Nuhh, one of the sons of the celebrated Almansor. Ali, his father, had dwelt in Balkh, in the Chorazan. After the birth of Avicenna he went to Asschena in Bucharia, where he continued to live till his son had reached his fifteenth year. No labour nor expense was spared on the education of Avicenna, whose abilities were so extraordinary that he is said to have been able to repeat the whole Koran by heart at the age of ten years. Ali gave him for a master Abou-Abdallah-Annatholi, who taught him grammar, dialectics, the geometry of Euclid, and the astronomy of Ptolemy. But Avicenna quitted his tuition because he could not give him the solution of a problem in logic. He attached himself to a merchant, who taught him arithmetic, and made him acquainted with the Indian numerals from which our own are derived. He then undertook a journey to Bagdad, where he studied philosophy under the great Peripatician, Abou-Nasr-Alfarabi, a disciple of Mesue the elder. At the same time he applied himself to medicine, under the tuition of the Nestorian, Abou-Sahel-Masichi. He informs us himself that he applied with an extraordinary ardour to the study of the sciences. He was in the habit of drinking great quantities of liquids during the night, to prevent him from sleeping; and he often obtained in a dream a solution of those problems at which he had laboured in vain while he was awake. When the difficulties to be surmounted appeared to him too great, he prayed to God to communicate to him a share of his wisdom; and these prayers, he assures us, were never offered in vain. The metaphysics of Aristotle was the only book which he could not comprehend, and after reading them over forty times, he threw them aside with great anger at himself.

Already, at the age of sixteen, he was a physician of eminence; and at eighteen he performed a brilliant cure on the calif Nuhh, which gave him such celebrity that Mohammed, Calif of Chorazan, invited him to his palace; but Avicenna rather chose to reside at Dschordschan, where he cured the nephew of the calif Kabus of a grievous distemper.

Afterwards he went to Ray, where he was appointed physician to Prince Magd-Oddaula. Here he composed a dictionary of the sciences. Sometime after this he was raised to the dignity of vizier at Hamdan; but he was speedily deprived of his office and thrown into prison for having favoured a sedition. While incarcerated he wrote many works on medicine and philosophy. By-and-by he was set at liberty, and restored to his dignity; but after the death of his protector, Schems-Oddaula, being afraid of a new attempt to deprive him of his liberty, he took refuge in the house of an apothecary, where he remained long concealed and completely occupied with his literary labours. Being at last discovered he was thrown into the castle of Berdawa, where he was confined for four months. At the end of that time a fortunate accident enabled him to make his escape, in the disguise of a monk. He repaired to Ispahan, where he lived much respected at the court of the calif Ola-Oddaula. He did not live to a great age, because he had worn out his constitution by too free an indulgence of women and wine. Having been attacked by a violent colic, he caused eight injections, prepared from long pepper, to be thrown up in one day. This excessive use of so irritating a remedy, occasioned an excoriation of the intestines, which was followed by an attack of epilepsy. A journey to Hamdan, in company with the calif, and the use of mithridate, into which his servant by mistake had put too much opium, contributed still further to put an end to his life. He had scarcely arrived at the town when he died in the fifty-eighth year of his age, in the year 1036.

Avicenna was the author of the immense work entitled “Canon,” which was translated into Latin, and for five centuries constituted the great standard, the infallible guide, the confession of faith of the medical world. All medical knowledge was contained in it; and nothing except what was contained in it was considered by medical men as of any importance. When we take a view of the Canon, and compare it with the writings of the Greeks, and even of the Arabians, that preceded it, we shall find some difficulty in accounting for the unbounded authority which he acquired over the medical world, and for the length of time during which that authority continued.

But it must be remembered, that Avicenna’s reign occupies the darkest and most dreary period of the history of the human mind. The human race seems to have been asleep, and the mental faculties in a state of complete torpor. Mankind, accustomed in their religious opinions to obey blindly the infallible decisions of the church, and to think precisely as the church enjoined them to think, would naturally look for some means to save them the trouble of thinking on medical subjects; and this means they found fortunately in the canons of Avicenna. These canons, in their opinion, were equally infallible with the decisions of the holy father, and required to be as implicitly obeyed. The whole science of medicine was reduced to a simple perusal of Avicenna’s Canon, and an implicit adherence to his rules and directions.

When we compare this celebrated work with the medical writings of the Greeks, and even of the Arabians, the predecessors of Avicenna, we shall be surprised that it contains little or nothing which can be considered as original; the whole is borrowed from the writings of Galen, or Ætius, or Rhazes: scarcely ever does he venture to trust his own wings, but rests entirely on the sagacity of his Greek and Arabian predecessors. Galen is his great guide; or, if he ever forsake him, it is to place himself under the direction of Aristotle.

The Canon contains a collection of most of the valuable information contained in the writings of the ancient Greek physicians, arranged, it must be allowed, with great clearness. The Hhawi of Razes is almost as complete; but it wants the lucidus ordo which distinguishes the Canon of Avicenna. I conceive that the high reputation which Avicenna acquired, was owing to the care which he bestowed upon his arrangement. He was undoubtedly a man of abilities, but not of inventive genius. There is little original matter in the Canon. But the physicians in the west, while Avicenna occupied the medical sceptre, had no opportunity of judging of the originality of their oracle, because they were unacquainted with the Greek language, and could not therefore consult the writings of Galen or Ætius, except through the corrupt medium of an Arabian version.

But it is not the medical reputation of Avicenna that induced me to mention his name here. Like all the Arabian physicians, he was also a chemist; and his chemical tracts having been translated into Latin, and published in Western Europe, we are enabled to judge of their merit, and to estimate the effect which they may have had upon the progress of chemistry. The first Latin translation of the chemical writings of Avicenna was published at Basil in 1572; they consist of two separate books; the first, under the name of “Porta Elementorum,” consists of a dialogue between a master and his pupil, respecting the mysteries of Alchymy. He gives an account of the four elements, fire, air, water, earth, and gives them their usual qualities of dry, moist, hot, and cold. He then treats of air, which, he says, is the food of fire, of water, of honey, of the mutual conversion of the elements into each other; of milk and cheese, of the mixture of fire and water, and that all things are composed of the four elements. There is nothing in this tract which has any pretension to novelty; he merely retails the opinions of the Greek philosophers.

The other treatise is much larger, and professes to teach the whole art of alchymy; it is divided into ten parts, entitled “Dictiones.” The first diction treats of the philosopher’s stone in general; the second diction treats of the method of converting light things into heavy, hard things into soft; of the mutation of the elements; and of some other particulars of a nature not very intelligible. The third diction treats of the formation of the elixir; and the same subject is continued in the fourth.

The fifth diction is one of the most important in the whole treatise; it is in general intelligible, which is more than can be said of those that precede it. This diction is divided into twenty-eight chapters: the first chapter treats of copper, which, he says, is of three kinds; permenian copper, natural copper, and Navarre copper. But of these three varieties he gives no account whatever; though he enlarges a good deal on the qualities of copper—not its properties, but its supposed medicinal action. It is hot and dry, he says, but in the calx of it there is humidity. His account of the composition of copper is the same with that of Geber.

The second chapter treats of lead, the third of tin, and in the remaining chapters he treats successively of brass, iron, gold, silver, marcasite, sulphuret of antimony, which is distinguished by the name of alcohol; of soda, which he says is the juice of a plant called sosa. And he gives an unintelligible process by which it is extracted from that plant, without mentioning a syllable about the combustion to which it is obvious that it must have been subjected.

In the twelfth chapter he treats of saltpetre, which, he says, is brought from Sicily, from India, from Egypt, and from Herminia. He describes several varieties of it, but mentions nothing about its characteristic property of deflagrating upon burning coals. He then treats successively of common salt, of sal-gem, of vitriol, of sulphur, of orpiment, and of sal ammoniac, which, he says, comes from Egypt, from India, and from Forperia. In the nineteenth and subsequent chapters he treats of aurum vivum, of hair, of urine, of eggs, of blood, of glass, of white linen, of horse-dung, and of vinegar.

The sixth diction, in thirty-three chapters, treats of the calcination of the metals, of sublimation, and of some other processes. I think it unnecessary to be more particular, because I cannot perceive any thing in it that had not been previously treated of by Geber.

The seventh diction treats of the preparation of blood and eggs, and the method of dividing them into their four elements. It treats also of the elixir of silver, and the elixir of gold; but it contains no chemical fact of any importance.

The eighth diction treats of the preparation of the ferment of silver, and of gold. The ninth diction treats of the whole magistery, and of the nuptials of the sun and moon; that is, of gold and silver. The tenth diction treats of weights.

The chemical writings of Avicenna are of little value, and apply chemistry rather to the supposed medical qualities of the different substances treated of, than to the advancement of the science. All the chemical knowledge which he possesses is obviously drawn from Geber. Geber, then, may be looked upon as the only chemist among the Arabians to whom we are indebted for any real improvements and new facts. It is true that the Arabian physicians improved considerably the materia medica of the Greeks, and introduced many valuable medicines into common use which were unknown before their time. It is enough to mention corrosive sublimate, manna, opium, asafœtida. It would be difficult to make out many of the vegetable substances used by the Arabian chemists; because the plants which they designated by particular names, can very seldom be identified. Botany at that time had made so little progress, that no method was known of describing plants so as to enable other persons to determine what they were.

The History of Chemistry

Подняться наверх