Читать книгу Искусственный интеллект и Машинное обучение. Основы программирования на Python - Тимур Казанцев - Страница 4
Примеры использования ИИ, МО и ГО
ОглавлениеДавайте посмотрим несколько примеров использования Искусственного интеллекта, машинного и глубокого обучения в нашей повседневной жизни.
Искусственный интеллект
Все лунные модули, которые бороздят поверхность Луны, используют алгоритмы ИИ. Их не надо контролировать каждую секунду, они сами принимают решения как объезжать препятствия и как собрать грунт в том или ином труднодоступном месте.
ИИ применяется и в беспилотных автомобилях. С помощью множества сенсоров, такие автомобили анализируют находящуюся вокруг них обстановку, определяют другие движущиеся машины, пешеходов, знаки дорожного движения, разметку, выбирают кратчайший путь и т.д.
Наше взаимодействие с голосовыми помощниками. Когда мы просим Алексу, Сири, или Алису от Яндекса сделать или найти что-то, они конвертируют наш голос в команды, обрабатывают их и выдают то, что нам необходимо.
Кроме голосовых помощников, очень развиты сейчас чат-боты, когда вы можете переписываться с компьютером, и он будет отвечать на ваши запросы. А в последнее время участились и звонки роботов на наши мобильные телефоны. Они могут предлагать какие-то рекламные акции или даже расспрашивать у вас информацию, например, когда вы планируете погасить кредитную задолженность. Такие роботы уже заменили многих сотрудников колл-центров.
Машинное обучение
Улучшение выдачи результатов поиска в Google. Когда ты вбиваешь какой-то запрос в поисковой строке, тебе выводится несколько ссылок. Если ты заходишь по одной из ссылок на первой странице, и просматриваешь страницу и проводишь там какое-то время изучая и читая информацию на этой странице, Google понимает, что ты нашел что искал. Когда заходишь на вторую, третью страницу, и видишь, что все это не то, то Google понимает, что это менее нужная информация, и в следующий раз когда другой человек зайдет на Google и спросит его об этом же, то Google будет знать, что лучше выдать в первой строчке на первой странице.
Решение о выдаче кредита банком. Компьютер анализирует большое количество параметров потенциального заемщика и потом распределяет его в категорию хороший или плохой заемщик, либо дает ему конкретный кредитный скоринг. Все это происходит на основе кредитной истории предыдущих заемщиков и как они схожи с потенциальным новым заемщиком. Выборка постоянно дополняется историей каждого нового заемщика, расплатился ли он с кредитом и выплатил ли его вовремя, она обновляется, и также обновляется и алгоритм, находятся новые закономерности, которые позволяют принимать правильные решения о выдаче кредита новому заемщику.
Выбор места для ритейла. В ритейле одним из самых главных факторов, которые влияют на прибыльность бизнеса, является местоположение. У сети кофеен Старбакс имеется около 30 000 локаций по всему миру. Вы накопили большой объем информации о том, в каких местах продажи лучше. На основе этой информации вы можете составить алгоритм по выбору наиболее удачного места в новой локации. Ваши переменные могут включать геохарактеристики (расстояние до центра города, до метро, цена за квадратный метр), трафик (число маршрутов наземного транспорта в разных радиусах от локации) и наличие тех или иных объектов рядом, например, торговых центров, бизнес-центров, домов, школ и банков.
Глубокое обучение
Очень часто ГО используется для распознавания объектов на изображениях. Кроме того, с помощью ГО черно-белые изображения или фильмы можно сделать цветными. До этого компьютер уже обработал большое количество данных и информации в интернете либо в базе данной, которую ему предоставили для этого, и он уже знает различные оттенки серого и может легко понять в какой цвет необходимо преобразить тот или иной пиксель изображения.
Машинный перевод. Возможно, кто-то из вас использовал Google Translate, и вы могли заметить насколько хорошо он переводит в последнее время. Практически ничего не надо исправлять. Но если вспомнить примерно 5 или 7 лет назад, то качество перевода было далеко от идеального. А все потому, что сейчас вместо множества правил как надо переводить, используются нейронные сети, через которые уже прошли миллионы переводов художественной, технической и другой литературы, и эти алгоритмы ГО все продолжают улучшаться.
Интеллектуальные игры: шахматы, Го, Дота 2, покер и другие. Долгое время считалось, что компьютер никогда не превзойдет по силе мысли человека до тех пор, пока он не сможет обыграть его в шахматы. Однако, это случилось в конце 20 века, а в 2010-х годах, компьютер, обученный алгоритмами ГО, смог обыграть и чемпионов в го – игру, которая считается даже еще более сложной чем шахматы. Сейчас не проходит и года, как не появляется очередная новость о том, что компьютер обыграл человека в очередной игре. ИИ уже обыграл людей в покер, Доту 2 и другие интеллектуальные игры. Все это получилось благодаря задействованию нейронных сетей и ГО.
Распознавание злокачественных заболеваний на коже или органах человека. Одним из самых полезных применений ИИ – это медицина. С помощью ГО и нейронных сетей компьютеры сегодня могут распознавать злокачественные опухоли еще на ранней стадии и даже лучше, чем опытные доктора. Это хорошо еще и тем, что пациент, находящийся в одной точке земного шара, может переслать свои снимки в лабораторию в другой стране для принятия решения. Предсказывается, что в будущем роботы с помощью ИИ будут выполнять все больше и больше сложных операций без участия человека.
Еще одним популярным применением ГО являются так называемые рекомендательные системы: когда при покупке одного товара нам предлагают другой. Наверное, вы видели, когда на сайте появляется фраза: «с этим товаром часто покупают». Или при просмотре фильма, или книги на сайте агрегаторе, вам начинают предлагать фильмы и книги похожей категории или те фильмы, которые смотрели пользователи, похожие на вас по различным параметрам. Все это алгоритмы ИИ, подкрепленные НС.
И в конце, на что еще хотелось бы обратить внимание. Как уже было сказано, и ГО и МО являются только частью более общей области под названием ИИ. Так вот, в сложных проектах, как правило, присутствует несколько видов алгоритмов ИИ, и глубокое обучение и машинное обучение, и другие виды. Например, во время движения беспилотного автомобиля участвует более 100 различных алгоритмов, которые ответственны за распознавание объектов, управление движением, навигацию, безопасность, и т.д.
Как вы заметили по приведенным примерам, ИИ уже используется во многих областях в нашей повседневной жизни. Считается, что в ближайшие пару десятилетий ИИ будет использоваться большинством компаний и охватывать большую часть нашей жизнедеятельности.