Читать книгу Snyder and Champness Molecular Genetics of Bacteria - Tina M. Henkin - Страница 247

SUGGESTED READING

Оглавление

1 Agashe VR, Guha S, Chang H-C, Genevaux P, Hayer-Hartl M, Stemp M, Georgopoulos C, Hartl FU, Barral JM. 2004. Function of trigger factor and DnaK in multidomain protein folding: increase in yield at the expense of folding speed. Cell 117:199–209.

2 Bae B, Feklistov A, Lass-Napiorkowska A, Landick R, Darst SA. 2015. Structure of a bacterial RNA polymerase holoenzyme open promoter complex. eLife 4:e08504.

3 Baker TA, Sauer RT. 2006. ATP-dependent proteases of bacteria: recognition logic and operating principles. Trends Biochem Sci 31:647–653.

4 Ban N, Nissen P, Hansen J, Capel M, Moore PB, Steitz TA. 1999. Placement of protein and RNA structures into a 5 A-resolution map of the 50S ribosomal subunit. Nature 400:841–847.

5 Becker SH, Darwin KH. 2017. Bacterial proteasomes: mechanistic and functional insights. Microbiol Mol Biol Rev 81:e00036–16.

6 Björk GR, Hagervall TG. 25 July 2005, posting date. Transfer RNA modification. EcoSal Plus 2005 doi:10.1128/ecosalplus.4.6.2.

7 Browning DF, Busby SJW. 2004. The regulation of bacterial transcription initiation. Nat Rev Microbiol 2:57–65.

8 Bukau B, Horwich AL. 1998. The Hsp70 and Hsp60 chaperone machines. Cell 92:351–366.

9 Condon C. 2007. Maturation and degradation of RNA in bacteria. Curr Opin Microbiol 10:271–278.

10 Feilmeier BJ, Iseminger G, Schroeder D, Webber H, Phillips GJ. 2000. Green fluorescent protein functions as a reporter for protein localization in Escherichia coli. J Bacteriol 182:4068–4076.

11 Freudl R. 2013. Leaving home ain’t easy: protein export systems in Gram-positive bacteria. Res Microbiol 164:664–674.

12 Galan JE, Waksman G. 2018. Protein-injection machines in bacteria. Cell 172:1306–1318.

13 Gualerzi CO, Pon CL. 2015. Initiation of mRNA translation in bacteria: structural and dynamic aspects. Cell Mol Life Sci 72:4341–4367.

14 Hendrickx APA, Budzik JM, Oh SY, Schneewind O. 2011. Architects at the bacterial surface: sortases and the assembly of pili with isopeptide bonds. Nat Rev Microbiol 9:166–176.

15 Hui MP, Foley PL, Belasco JG. 2014. Messenger RNA degradation in bacterial cells. Annu Rev Genet 48:537–559.

16 Keiler KC, Feaga HA. 2014. Resolving nonstop transl at ion complexes is a matter of life or death. J Bacteriol 196:2123–2130.

17 Koronakis V, Eswaran J, Hughes C. 2004. Structure and function of TolC: the bacterial exit duct for proteins and drugs. Annu Rev Biochem 73:467–489.

18 Korostelev A, Noller HF. 2007. The ribosome in focus: new structures bring new insights. Trends Biochem Sci 32:434–441.

19 Lee HC, Berns tein HD. 2001. The targeting pathway of Escherichia coli presecretory and integral membrane proteins is specified by the hydrophobicity of the targeting signal. Proc Natl Acad Sci USA 98:3471–3476.

20 Li L, Park E, Ling J, Ingram J, Ploegh H, Rapoport TA. 2016. Crystal structure of a substrateengaged SecY protein-translocation channel. Nature 531:395–399.

21 Madden JC, Ruiz N, Caparon M. 2001. Cytolysin-mediated translocation (CMT): a functional equivalent of type III secretion in Gram-positive bacteria. Cell 104:143–152.

22 Marbaniang CN, Vogel J. 2016. Emerging roles of RNA modifications in bacteria. Curr Opin Microbiol 30:50–57.

23 McGary K, Nudler E. 2013. RNA polymerase and the ribosome: the close relationship. Curr Opin Microbiol 16:112–117.

24 Meinnel T, Sacerdot C, Graffe M, Blanquet S, Springer M. 1999. Discrimination by Escherichia coli initiation factor IF3 against initiation on non-canonical codons relies on complementarity rules. J Mol Biol 290:825–837.

25 Mikula KM, Leo JC, Łyskowski A, Kedracka-Krok S, Pirog A, Goldman A. 2012. The translocation domain in trimeric autotransporter adhesins is necessary and sufficient for trimerization and autotransportation. J Bacteriol 194:827–838.

26 Mogk A, Deuerling E, Vorderwülbecke S, Vierling E, Bukau B. 2003. Small heat shock proteins, ClpB and the DnaK system form a functional triade in reversing protein aggregation. Mol Microbiol 50:585–595.

27 Noeske J, Wasserman MR, Terry DS, Altman RB, Blanchard SC, Cate JH. 2015. High-resolution structure of the Escherichia coli ribosome. Nat Struct Mol Biol 22:336–341.

28 Olivares AO, Baker TA, Sauer RT. 2016. Mechanistic insights into bacterial AAA+ proteases and protein-remodelling machines. Nat Rev Microbiol 14:33–44.

29 Palmer T, Sargent F, Berks BC. 2005. Export of complex cofactor-containing proteins by the bacterial Tat pathway. Trends Microbiol 13:175–180.

30 Ramakrishnan V. 2014. The ribosome emerges from a black box. Cell 159:979–984.

31 Ruff EF, Record MT Jr, Artsimovitch I. 2015. Initial events in bacterial transcription initiation. Biomolecules 5:1035–1062.

32 Sun Z, Scott DJ, Lund PA. 2003. Isolation and characterisation of mutants of GroEL that are fully functional as single rings. J Mol Biol 332:715–728.

33 van den Berg B, Clemons WM, Jr, Collinson I, Modis Y, Hartmann E, Harrison SC, Rapoport TA. 2004. Xray structure of a protein-conducting channel. Nature 427:36–44.

34 Waksman G, Hultgren SJ. 2009. Structural biology of the chaperone-usher pathway of pilus biogenesis. Nat Rev Microbiol 7:765–774.

35 Wang J, Boisvert DC. 2003. Structural basis for GroEL-assisted protein folding from the crystal structure of (GroEL-KMgATP)14 at 2.0A resolution. J Mol Biol 327:843–855.

36 Washburn RS, Gottesman ME. 2015. Regulation of transcription elongation and termination. Biomolecules 5:1063–1078.

37 Xie K, Dalbey RE. 2008. Inserting proteins into the bacterial cytoplasmic membrane using the Sec and YidC translocases. Nat Rev Microbiol 6:234–244.

38 Zuker M. 2003. Mfold Web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415.

Snyder and Champness Molecular Genetics of Bacteria

Подняться наверх