Читать книгу Человеческий риск (системные основы управления) - В. Б. Живетин - Страница 10

Глава I. Показатели человеческих рисков. Основные понятия
1.5. Модели окружающего мира и их достоверность

Оглавление

Человеческий риск связан прежде всего с жизнедеятельностью человека в окружающей среде, в том числе в социальной, государственно-правовой, финансовой средах.

Обратимся к истории создания моделей отдельных подсистем окружающего мира и возможности применять их для целей жизнедеятельности с позиции их достоверности. В чем состоят проблемы достоверности, как они решаются? Возможна ли истинная модель? И нужна ли она?

Наиболее образно по этому поводу сказал А. Эйнштейн: «В нашем стремлении понять реальность мы подобны человеку, который хочет понять механизм закрытых часов. Он видит циферблат и движущиеся стрелки, даже слышит тиканье, но не имеет средств открыть их. Если он остроумен, он может нарисовать себе картину механизма, но он никогда не может быть вполне уверен в том, что его картина единственная, которая могла бы объяснить его наблюдения. Он никогда не будет в состоянии сравнить свою картину с реальным механизмом, и он не может даже представить себе возможность и смысл такого сравнения» [43].

Согласно сказанному, наука изучает явления, происходящие в окружающем мире, которые представляют собой процессы, порожденные некоторой системой, включенной в общий комплекс систем мироздания. По известным состояниям процесса Z(t) в некоторые моменты времени мы хотим знать его предысторию и будущее. С этой целью нам нужна истинная модель Ми подсистемы, породившей процесс Z(t), т. е. нам нужна модель Ми(Z(t)). В приведенном примере мы знаем Z(t) – перемещение стрелки, но как воспроизвести этот процесс, с помощью какого механизма – не знаем, т. е. не знаем модель Ми. Тогда наука поступает так: строит модель Мр (расчетную или оценочную Mo = Mp) таким образом, чтобы отличие истинного процесса Z(t) от реализованного Zр(t) на выходе модели Мр(Zр(t)) было в каком-то смысле минимальным. При этом сразу же предполагается: в силу отличия Ми от Мр процессы Zи(t) и Zр(t) отличаются, т. е. модель работает с погрешностью δ(t). В зависимости от способности человека, создавшего модель Мр, погрешность δ(t) будет иметь различные значения. Итак, модель Мр зависит от человека θч, создающего эту модель, от его возможностей, в том числе состояния или уровня научных знаний Зн, накопленных человечеством, информационного обмена между людьми и других факторов. В результате имеем Zр = f (Мр, Ми, θч, Зн, δ).

О том, как же наука строит Zр(t) или Мр, хорошо сказал крупнейший американский физик Р. Фейнман: «Вот почему наука не достоверна. Как только Вы скажете что-нибудь из области опыта, с которым непосредственно не соприкасались, Вы сразу же лишаетесь уверенности. Но мы обязательно должны говорить о тех областях, которые мы никогда не видели, иначе от науки не будет проку… Поэтому, если мы хотим, чтобы от науки была какая-то польза, мы должны строить догадки. Чтобы наука не превратилась в простые протоколы проделанных опытов, мы должны выдвигать законы, простирающиеся на еще не известные области. Ничего дурного тут нет, только наука оказывается из-за этого недостоверной, а если Вы думали, что наука достоверна, Вы ошибались» [16]. Итак, задача науки – открывать новое, формировать новые законы, объяснять, почему в данный момент времени на выходе системы возникло именно это значение Z(t), а не другое.

Чем дальше мы проникаем в суть явления, тем сложнее становятся модели Ми, тем тоньше явления, а сами процессы Z(t) более чувствительны к погрешностям, вносимым при построении Мр. При этом необходимо каким-то образом обнаруживать эти погрешности, не имея возможности вскрывать часы, а также испытывая ограничения в точности существующих средств измерения. По этому поводу один из творцов квантовой механики В. Гейзенберг писал: «Микромир нужно наблюдать по его действиям посредством высоко совершенной экспериментальной техники. Однако он уже не будет предметом нашего непосредственного чувственного восприятия. Естествоиспытатели должны здесь отказаться от мысли о непосредственной связи основных понятий, на которых он строит свою науку, с миром чувственных восприятий. Наши усложненные эксперименты представляют собой природу не саму по себе, а измененную и преобразованную под влиянием нашей деятельности в процессе исследования… Следовательно, здесь мы также вплотную наталкиваемся на непреодолимые границы человеческого познания» [16].

Как много сказано о границах человеческого познания! Такие границы существуют и зависят от состояния науки на текущий момент времени; от финансовых возможностей человечества; от ограниченности срока жизни ученых и т. д. Об ограниченности познания можно говорить не только в микромире, но и в такой области, как авиация. Так, модель, описывающая движение самолета, существует, как правило, в эксплуатационной области состояния параметров движения и редко на границе критических значений этих параметров. Как только параметры движения или часть их превышают критические значения и самолет переходит, например, в штопор, надежные модели отсутствуют. При этом возникают чрезвычайно тонкие аэродинамические процессы, описать которые и тем более измерить в полете, т. е. предсказать полную картину движения самолета в таком режиме, сложно, как правило, невозможно.

Истинная модель Ми и порожденный ею процесс Zи(t) скрыты от нас и непостижимы. Как только мы не учтем факт ограниченности научных знаний, мы потеряем много: окажемся в области риска и соответствующих потерь. При этом, как и во всем нашем мире, наука простирается между истинными знаниями и незнанием. Между этими границами расположены знания и, в частности, модели, построенные при различных допущениях.

По поводу последнего в коллективном труде «Логика научного исследования», созданном под руководством директора Института философии П.В. Копнина, сказано: «К идеалу научного знания всегда предъявлялись требования строгой определенности, однозначности и исчерпывающей ясности. Однако научное знание всякой эпохи, стремившееся к этому идеалу, тем не менее не достигло его. Получилось, что в любом самом строгом научном построении всегда содержатся такие элементы, обоснованность и строгость которых находились в вопиющем противоречии с требованиями идеала. И что особенно знаменательно: к такого рода элементам принадлежали зачастую самые глубокие и фундаментальные принципы данного научного построения. Наличие такого рода элементов воспринималось обычно как просто результат несовершенства знания данного периода. В соответствии с такими мнениями в истории науки неоднократно предпринимались и до сих пор предпринимаются энергичные попытки полностью устранить из науки такого рода элементы. Однако эти попытки не привели к успеху. В настоящее время можно считать доказанной несводимость знания к идеалу абсолютной строгости. К выводу о невозможности полностью изгнать даже из самой строгой науки – математики – «нестрогие» положения после длительной и упорной борьбы вынуждены были прийти и «логицисты»… Все это свидетельствует не только о том, что любая система человеческого знания включает в себя элементы, не могущие быть обоснованными теоретическими средствами вообще, но и о том, что без наличия подобного рода элементов не может существовать никакая научная система знания» [30].

Итак, мы должны признать наличие двух моделей системы мироздания и ее подсистем, с которыми имеет дело человек в процессе жизнедеятельности. Одна из них есть истинная модель Ми, другая модель – расчетная Мр, полученная в процессе научных изысканий.

Построив модель Мр с погрешностями, которая создает процесс Zр также с погрешностями, мы проводим эксперимент с целью подтвердить правильность построенной модели Мр, сравнивая процессы Zр и Zи (истинный).

При этом мы наблюдаем ситуации, создаваемые моделью Ми изучаемого объекта А и построенной нами моделью, делая вывод о достоверности модели Мр.

Изучаемый объект А и процесс Zи может как принадлежать области допустимых состояний Ωдоп, так и не принадлежать ей. В последнем случае модель Мр теряет свое прикладное значение.

В процессе испытаний, на основе которых делаются выводы о правильности Мр, возможны различные ситуации, которые в силу случайных свойств Zр, Zи будем характеризовать численно вероятностями вида:


Р1 = Р1{Zu Ωдоп, Zp Ωдоп};

Р2 = Р2{Zu Ωдоп, Zp Ωдоп};

Р3 = Р3{Zu Ωдоп, Zp Ωдоп};

Р4 = Р{Zu Ωдоп, Zp Ωдоп}.


При этом вероятность Р1 характеризует ситуацию, когда верная модель включается в число достоверных знаний; Р2 характеризует ошибки знаний, когда верная модель отклоняется; Р3 – неверная модель принимается за верную; Р4 характеризует ситуацию, когда неверная модель отклоняется.

При этом можно условно выделить в области знаний крайние значения: верхнее значение x = xвкр, когда научные знания, которых чрезвычайно мало, являются истинными или действительными; нижнее значение x = xнкр, когда случайная погрешность δ(t) настолько велика, что мы о том или ином процессе, явлении не имеем достоверной информации. Таким образом, область значений между (xнкр, xвкр) заполнена моделями с допущениями, включающими в себя различные предположения, «догадки», подтвержденные кем-то и когда-то, гипотезы, находящиеся в процессе осмысления. При этом значимость «абсолютных» или истинных знаний для процессов жизнедеятельности невелика. В основном мы используем все, что расположено внутри (xнкр, xвкр).

По мере развития науки, усложнения решаемых ею проблем возрастает область (xнкр, xвкр) и порождаются новые проблемы, увеличивая наши незнания.

В.И. Вернадский так оценивал процесс познания истины, развития науки: «Создается единый общеобязательный, неоспоримый в людском обществе комплекс знаний и понятий для всех времен и для всех народов. Эта общеобязательность и непреклонность выводов охватывает только часть научного знания – математическую мысль и эмпирическую основу знаний – эмпирические понятия, выраженные в фактах и обобщениях. Ни научные гипотезы, ни научные модели в космогонии, ни научные теории, возбуждающие столько страстных споров, привлекающие к себе философские мысли, этой общеобязательностью не обладают. Они необходимы и неизбежны, без них научная мысль работать не может. Но они преходящи и в значительной, непреодолимой для современников степени неверны и двусмысленны» [12].

В чем же причины такого состояния науки, которая развивается вместе с человеком? Почему человек, коллективы людей – в современном понимании школы – допускают ошибки? Приведем одну мысль по поводу развития науки, принадлежащую современному русскому ученому В.В. Налимову: «Рост науки – это не столько накопление знаний, сколько непрерывная переоценка накопленного – создание новых гипотез, опровергающих предыдущие. Но тогда научный прогресс есть не что иное, как последовательный процесс разрушения ранее существующего незнания. На каждом шагу старое незнание разрушается путем построения нового, более сильного незнания, разрушить которое в свою очередь со временем становится все труднее (по многим причинам, и прежде всего – сложности и экономической стоимости).

И сейчас невольно хочется задать вопрос: не произошла ли гибель некоторых культур, скажем, египетской, и деградация некогда мощных течений мысли, например древнеиндийской, потому, что они достигли такого уровня незнания, которое уже не поддавалось разрушению?» [16]

Итак, научные знания, в том числе модели мироздания и его отдельных подсистем, никогда не были идеальными, они всегда несли ошибки, которые не позволяли осуществлять процессы жизнедеятельности без потерь, без риска.

Человеческий риск (системные основы управления)

Подняться наверх