Читать книгу Клиническая кризология в кардионеврологии. Руководство для врачей - В. М. Фролов - Страница 7

Часть I
Общая кризология обострение и катастрофическое течение болезни
Глава 2
Современные представления о кровообращении в норме и патологии
2.2. Динамическая организация кровообращения

Оглавление

Основным источником динамической организации транспортной системы служит сердце. Сокращение предсердий и желудочков является сложным, многофазным, строго согласованным по времени процессом6. После окончательного наполнения желудочков в диастолу давление в полости левого желудочка начинает повышаться, замыкаются атривентрикулярные клапаны. Существует короткий период увеличения давления при закрытых аортальных клапанах – изоволюмическая фаза, в которой левый желудочек изменяет форму, уменьшаясь размерах, одновременное «закручиваясь» вокруг своей оси. В момент превышения уровня систолического давления над конечным диастолическим, раскрываются аортальные клапаны, происходит сердечный выброс. Фазу быстрого изгнания называют «изотонической», поскольку она приводит к выравниванию давления в аорте и полости левого желудочка. Динамическая организация работы сердца тесно связана с понятием сердечного цикла.


Сердечный цикл – последовательность процессов, происходящих за одно сокращение сердца и его расслабление.


Таблица 1–1

Периоды и фазы сердечного цикла


Механика работы сердца достаточно хорошо изучена с помощью ультразвуковых и электрофизиологических методов исследования, которые позволяют зарегистрировать точные временные интервалы каждой фазы сердечного цикла. Изменения формы и положения камер сердца в точном соответствии временными интервалами и есть пространственно-временная модель работы сердца. Такая модель может сохранять работоспособность при выполнении некоторых условий. Первое и главное – завершенность цикла. В самом упрощенном виде это означает, что без наполнения не может быть изгнания, при разрушении цикла динамическая конструкция разрушается. Второе условие – сохранение последовательности периодов и фаз цикла. При сохранении цикла, но нарушении его внутренней последовательности, динамическая организация сохраняется, но теряется ее эффективность за счет потери согласованности фаз.

Систолический выброс увеличивает объем аорты и крупных артерий за счет их эластичной растяжимости. Пульсация крупных артерий достигает значительной амплитуды. Например, диаметр аорты увеличивается примерно на 10 %. Систола формирует гидродинамический удар, который распространяется на периферию в виде пульсовой волны. Крупные сосуды эластического типа принимают непосредственное участие в организации движения крови, они обеспечивают выравнивание кровотока в период диастолы за счет возвращения к первоначальным размерам. Скорость пульсовой волны – один из физических параметров, который зависит от жесткости сосудистой стенки. Если у молодых людей скорость пульсовой волны в аорте не превышает 4 м/с, то в пожилом возрасте она может достигать 12–18 м/с. В клинической практике динамические характеристики пульса оценивались врачами задолго до появления инструментальных методов исследования. Последователь Гиппократа Герофил Халкедонский, авторству которого принадлежат термины «систола» и «диастола», полагал, что при помощи пульса «можно узнать о существовании болезни и предвидеть грядущие». Сегодня, несмотря на внедрение в клиническую практику самых технологичных методов исследования, врачи различают множество свойств пульсовой волны. Среди них: частота, ритмичность, наполнение, напряжение, высота, форма (скорость). Очевидно, что свойства пульсовой волны на лучевой артерии, например, отражают состояние всей системы кровообращения, включая сердце. Пульсовая волна – это распространение систолического давления и изменение формы артерий от сердца к периферии сосудистого русла. Динамические характеристики пульсовой волны зависят главным образом от насосной функции сердца и эластических свойств артерий. Пульсовая волна достигает артерий стопы уже через 0,2–0,3 секунды после систолы. Скорость движения крови не соответствует скорости пульсовой волны, она значительно ниже. Кровоток отстает от волны давления тем больше, чем дальше кровь продвигается от сердца. Новая порция крови достигает артерий стопы не ранее чем через 2–3 секунды после систолы. Таким образом, на периферии кровообращения, скорость кровотока примерно в 10 раз ниже скорости пульсовой волны. Эта разница обусловлена главным образом свойствами самой крови: увеличение вязкости жидкости приводит к уменьшению скорости ее движения (закон Пуазейля).

Хотя древние врачи использовали для диагностики динамические характеристики пульса несколько тысяч лет назад, более или менее полные представления о механике движения крови сложились у врачей по историческим меркам совсем недавно. Открытие системы кровообращения принадлежит английскому учёному William Harvey (1628). В 1733 году английский священник Stefan Hales впервые измерил артериальное давление. Честь открытия бескровного метода измерения артериального давления, который используется в клинической практике и сегодня, принадлежит Н. С. Короткову (1905 г.). В середине XX века методы исследования гемодинамики, благодаря многочисленным исследованиям H. Н. Савицкого и его учеников, получили широкое распространение в научных исследованиях и клинической практике. Монография ученого «Биофизические основы кровообращения и клинические методы изучения гемодинамики» (1974) легла в основу современных представлений о биодинамике сложных самоорганизующихся систем. Электрокардиография стала рутинным методом исследования в середине XX века, а в конце прошлого столетия специалисты уже пользовались такими физическими терминами, как ударный и минутный объем, объемная скорость кровотока, периферическое сопротивление, фракция выброса.

Клиническая кризология в кардионеврологии. Руководство для врачей

Подняться наверх