Читать книгу Теория газотурбинных двигателей - В. М. Корнеев - Страница 4
Входные устройства
Сверхзвуковые входные устройства
ОглавлениеНа двигателях современных сверхзвуковых самолетов применяются воздухозаборники, которые различаются принципом организации процесса торможения сверхзвукового потока (числом скачков и их расположением), формой поперечного сечения входных устройств, расположением их на летательном аппарате и рядом других признаков.
Торможение набегающего потока в воздухозаборниках двигателей сверхзвуковых самолетов осуществляется в специально организованной системе скачков уплотнения воздуха. С этой целью применяются профилированные поверхности, при обтекании которых образуется несколько последовательных или пересекающихся скачков уплотнения, заканчивающихся обычно прямым скачком.
Сверхзвуковые входные устройства можно разделить на три типа:
– входные устройства внешнего сжатия;
– входные устройства смешанного сжатия;
– входные устройства внутреннего сжатия.
Они различаются местом расположения скачков уплотнения. В первом случае косые скачки уплотнения воздуха располагаются перед плоскостью входа входного устройства. Во втором случае часть скачков уплотнения воздуха располагается вне и часть внутри воздухозаборника. В третьем – все скачки уплотнения находятся внутри воздухозаборника.
Значительное удаление прямого скачка уплотнения от плоскости входа воздухозаборника вызывает помпаж двигателя. При критических режимах работы входного устройства появляются высокочастотные пульсации потока воздуха, получившие название «зуда».
Изменение углов атаки оказывает значительное влияние на характеристики и запас устойчивости сверхзвуковых входных устройств.
Наибольшее влияние изменение углов атаки на сверхзвуковые входные устройства наблюдаются у осесимметричных воздухозаборников.
В результате возникновения окружной неравномерности потока воздуха происходит уменьшение коэффициента расхода воздуха, коэффициента сохранения полного давления воздуха и уменьшается запас устойчивости входного устройства. При этом значительно уменьшается расход воздуха через двигатель и его тяга.
Изменение направления потока воздуха, обтекающего входное устройство, в точности соответствует изменению угла атаки только у лобовых воздухозаборников.
При расположении воздухозаборников двигателя у боковых поверхностей фюзеляжа изменение углов набегающего потока на входное устройство оказывается большим, чем изменение улов атаки воздушного судна из-за местных возмущений потока, создаваемых фюзеляжем самолета.
Чтобы не допускать снижения коэффициента запаса устойчивости входного устройства при полете воздушного судна с большими углами атаки применяют выдвижение конуса у осесимметричного или клина у плоского воздухозаборника.
Помпаж авиадвигателя возможен при сверхзвуковых скоростях полета самолета и на таких режимах, при которых либо мала пропускная способность авиадвигателя, либо чрезмерно велика пропускная способность входного устройства.
Помпаж авиадвигателя проявляется в том, что возникают колебания давления и расхода воздуха по всему газовоздушному тракту двигателя.
Помпаж входного устройства авиадвигателя недопустим. Резкие колебания давления и расхода воздуха в воздухозаборнике могут вызвать помпаж компрессора и повышение температуры газа перед турбиной или самовыключение двигателя.
Возникновению помпажа двигателя на самолете способствуют все факторы, приводящие к переполнению воздухом входного устройства двигателя. Для устранения помпажа необходимо уменьшить противодавление за воздухозаборником, что может быть сделано сбросом избытка воздуха из входного устройства через створки перепуска, переводом двигателя на режим с большим расходом воздуха путем увеличения режима работы двигателя, а также снижением пропускной способности входного устройства путем его регулирования. Эффективным средством прекращения помпажа воздухозаборника двигателя является снижение скорости полета самолета.
«Зуд» входных устройств двигателя наблюдается при снижении противодавления за воздухозаборником. Такое явление возникает всякий раз, когда пропускная способность входного устройства оказывается меньшей, чем требуется для двигателя. В результате возникают высокочастотные пульсации потока воздуха с частотой колебаний от десятков до сотен герц и с амплитудой, меньшей, чем при помпаже. Интенсивность пульсаций при «зуде» определяется, в основном, режимом работы двигателя.
Возникающие пульсации давлений воздуха снижают запас устойчивости компрессора. Но «зуд» менее опасен, чем помпаж двигателя, и может допускаться в эксплуатации на некоторых режимах.
Задача регулирования сверхзвуковых воздухозаборников состоит в обеспечении согласования работы входного устройства и двигателя.
Программа регулирования сверхзвукового воздухозаборника подбирается под заданные характеристики двигателя. С этой целью вначале определяются потребные значения расхода воздуха режимах работы двигателя. Эти потребные значения параметров воздухозаборника обеспечиваются затем надлежащим его регулированием.
Изменение температуры окружающего воздуха вызывает рассогласование режимов работы входного устройства и двигателя. Снижение температуры приводит к увеличению пропускной способности воздухозаборника.
При увеличении углов атаки основная задача регулирования состоит в обеспечении достаточных запасов устойчивости входного устройства.
Если для осесимметричных входных устройств, выдвижением конуса не удается обеспечить весь диапазон потребного регулирования воздухозаборника, то после полного выдвижения конуса, согласование работы входного устройства и двигателя осуществляется открытием противопомпажных створок.
Регулирование сверхзвуковых входных устройств осуществляется автоматической системой регулирования. Она должна обеспечивать получение необходимой тяги двигателя и гарантировать его устойчивую работу на всех режимах.
Следствием помпажа входного устройства является значительное повышение уровня нестационарности потока перед компрессором двигателя, приводящее к нарушению устойчивой работы компрессора. В отдельных случаях помпаж компрессора может возникать и на режимах «зуда» входного устройства.
Запас газодинамической устойчивости входного устройства по помпажу зависит, с одной стороны, от условий совместной работы воздухозаборника и компрессора, а с другой, – от числа М полета (числа Маха) и угла атаки самолета. Эти факторы учитываются программами регулирования сверхзвуковых воздухозаборников.
Однако сложно обеспечить требуемый диапазон регулируемых параметров для всех возможных сочетаний режимов полета и работы двигателя. Это заставляет вводить ограничения, осуществляемые экипажем или обеспечиваемые с помощью блокировок, вводимых в систему автоматического регулирования.