Читать книгу Энергия и цивилизация - Vaclav Smil, Вацлав Смил - Страница 7
2. Энергия в доисторические времена
ОглавлениеПонимание истоков рода Homo и заполнение деталями его последующей эволюции – бесконечный квест, поскольку находки отодвигают старые маркеры и усложняют картину, ученые открывают новые виды, которые не соответствуют существующей иерархии (Trinkaus 2005; Reynolds and Gallagher 2012). На 2015 год старейшими, надежно датированными гомининами остаются Ardipithecus ramidus (4,4 миллиона лет назад, найден в 1994 году) и Australopithecus anamensis (4,1–5,2 миллиона лет назад, найден в 1967 году). Значимым дополнением 2015 года был Australopithecus deyirimeda (3,3–3,5 миллиона лет назад) из Эфиопии (Hayle-Selassie et al. 2015). Последовательность более молодых гоминин включает Australopithecus afarensis (найден в 1974 году в Лаэтоли, Танзания, и в Хадаре, Эфиопия), Homo habilis (обнаружен в 1960 году в Танзании) и Homo erecrus (появился 1,8 миллиона лет назад, множество находок в Африке, Азии и Европе, самые молодые датируются 250 тысячами лет назад).
Повторный анализ первых костей Homo sapiens, найденных Ричардом Лики в Эфиопии в 1967 году – показал датировку порядка 190 тысяч лет назад (McDougall, Brown, and Fleagle 2005). Наши прямые предки добывали пищу охотой и собирательством, и только 10 тысяч лет назад отдельные маленькие группы начали переходить к оседлому образу жизни, базой которого стали одомашненные растения и животные. Это значит, что миллионы лет стратегии добывании пищи гоминин не отличались от стратегий наших примитивных предков, но сейчас у нас есть изотопные доказательства из Восточной Африки, что около 3,5 миллиона лет назад рацион гоминин начал отличаться от рациона сохранившихся человекообразных обезьян. Исследователи (Sponheimer and co-workers 2013) обнаружили, что с этого времени несколько таксонов гоминин начали вводить в свой рацион пищу, обогащенную изотопом 13С (произведенную в результате С4-метаболизма), и поэтому состав изотопов углерода у них в организме сильно отличался от такового у африканских млекопитающих. Опора на растения С4 таким образом имеет древнее происхождение, в современном сельском хозяйстве есть два С4-растения: кукуруза и сахарный тростник, и они характеризуются более высокими средними урожаями, чем любой другой вид, дающий нам зерно или сахар.
Первым эволюционным достижением, которое в конечном итоге привело к появлению нашего вида, было не увеличение мозга, не изготовление орудий, а прямохождение, структурно очень маловероятное, но имеющее огромные адаптационные последствия. Начало появления этого признака можно проследить до эпохи примерно в 7 миллионов лет назад (Johanson 2006). Люди – единственные млекопитающие, для которых перемещение на двух ногах является нормой (другие приматы делают это лишь иногда), и поэтому прямохождение можно рассматривать как важнейший эволюционный прорыв, который и сделал нас в конечном итоге людьми. Хотя прямохождение – в сущности последовательность прерванных падений – нестабильно и неуклюже: «Человеческая походка – очень рискованная штуковина. Без точнейшего расчета времени человек просто упадет на лицо; фактически каждый шаг, который он делает, не более чем качание на краю катастрофы» (Napier 1970, 165). Непременно стоит отметить, что из-за прямохождения повышается риск мышечно-скелетных травм, с возрастом кости становятся хрупкими, менее плотными, возникает остеопороз (Latimer 2005).
Много вариантов ответа было предложено на простой вопрос, почему мы ходим на двух ногах, и большинство из них, как показано в недавней работе (Johanson 2006), выглядят совершенно неубедительными. Попытка распрямиться, чтобы запугивать хищников, не имела бы эффекта в случае с дикими собаками, гепардами или гиенами, которые не боятся более крупных млекопитающих. Попытка распрямиться, чтобы иметь лучший обзор в высокой траве только привлекла бы внимание тех же хищников; добраться до фруктов на низких ветвях можно было, не отказываясь от быстрого перемещения на четырех конечностях; а охлаждение тела легко достигается отдыхом в тени и добычей провизии в утренние и вечерние часы, когда прохладно. Различия в общих затратах энергии могут служить наилучшим объяснением (Lovejoy 1988). Гоминины, как и почти все млекопитающие, тратят большую часть энергии при воспроизведении, кормежке и обеспечении безопасности, и прямохождение помогает выполнять все эти функции.
Как изложил это исследователь (Johanson 2006, 2): «Естественный отбор не может создать вид поведения вроде прямохождения, но он может содействовать отбору этого вида поведения после того, как он появился». Если рассматривать проблему в более узком смысле, то совершенно не очевидно, что прямохождение предложило значительные биомеханические преимущества, чтобы обеспечить его отбор просто на основе затрат энергии на передвижение (Richmond et al. 2001). Хотя ученые (Sockol, Raichlen, and Pontzer 2007), измерив затраты энергии при передвижении шимпанзе и взрослого человека, нашли, что человеческая ходьба обходится в 75 % энергии от той, что расходуется при перемещении шимпанзе на двух или четырех конечностях. Разница возникает благодаря биомеханическим отличиям в анатомии и способе перемещения, и прежде всего – более вытянутому бедру и более длинным задним конечностям человека.
С прямохождения начался каскад значительных эволюционных изменений (Kingdon 2003, Meldrum and Hilton 2004). Оно освободило руки гоминин, чтобы держать оружие или переносить пищу к месту постоянного жительства, а не съедать ее на месте. Но в первую очередь оно было необходимо, чтобы развивалась координация кистей и появилась возможность использовать инструменты. Исследователи (Hashimoto and co-workers 2013) сделали вывод, что адаптации, обеспечившие освоение инструментов, развивались независимо от тех, которые требовались для человеческого прямохождения, поскольку и у людей, и у обезьян каждый палец руки представлен отдельно в первичной сенсомоторной области мозга, точно так же как сами пальцы разделены между собой. Поэтому возможно использовать каждую фалангу в сложных движениях, которые требуются при освоении инструментов. Но без прямохождения было бы невозможно использовать туловище в качестве опоры для рычага руки при изготовлении орудий и их применении. Прямохождение также освободило рот и зубы для развития более сложной системы звуковых сигналов, предшественницы языка (Aiello 1996). При этом понадобился более крупный мозг, энергетические потребности которого в конечном итоге в три раза превысили потребности мозга шимпанзе и составили до одной шестой общего базового метаболизма (Foley and Lee 1991; Lewin 2004). Средний коэффициент энцефализации (актуальная/ожидаемая масса мозга для заданной массы тела) составляет 2–3,5 в случае приматов и ранних гоминин, а для человека – несколько выше 6. Три миллиона лет назад Australopithecus afarensis имел мозг объемом менее чем 500 см3, полтора миллиона лет назад объем мозга удвоился у Homo erectus, а затем вырос еще примерно на 50 % у Homo sapiens (Leonard, Snodgrass, and Robertson 2007).
Более высокий коэффициент энцефализации был критически важен для роста социальной сложности (которая повысила шансы на выживание и поставила гоминин особняком среди прочих млекопитающих) и тесно связан с изменениями потребляемой пищи. Особые энергетические потребности мозга, грубо, в 16 раз больше, чем у скелетных мускулов, мозг человека расходует 20–25 % от метаболической энергии в состоянии покоя, в отличие от 8-10 % в случае других приматов и всего лишь 3–5% для остальных млекопитающих (Holliday 1986; Leonard et al. 2003). Единственный способ ужиться с таким большим мозгом, поддерживая ту же скорость метаболизма (человеческий метаболизм в состоянии покоя не выше, чем у других млекопитающих сравнимой массы) состоял в снижении массы других метаболически затратных тканей. Айелло и Уилер (Aiello and Wheeler 1995) доказывали, что уменьшение размера пищеварительного тракта было лучшим выбором, поскольку масса кишечника (в отличие от массы сердца или почек) может варьироваться в значительной степени в зависимости от рациона питания.
Различные исследователи (Fish and Lockwood 2003; Leonard, Snodgrass and Robertson 2007; Hublin and Richards 2009) подтвердили, что качество пищи и масса мозга имеют значительную позитивную корреляцию у приматов, и улучшения питания гоминин, включение в рацион мяса, поддерживают более крупный мозг, высокие энергетические затраты которого таким образом компенсируются за счет уменьшения кишечного тракта (Brauen et al. 2010). В то время как у существующих в наше время приматов, помимо человека, более 45 % массы кишок приходится на толстый кишечник и только 14–29 % на тонкий кишечник, у людей эти пропорции обратны: более 56 % приходится на тонкий кишечник и только 17–25 % на толстый.
Это явственное указание на адаптацию к более качественным видам пищи с высокой плотностью энергии (мясо, орехи), которые перевариваются в тонком кишечнике. Увеличение количества потребляемого мяса помогает объяснить выигрыш человека в массе тела и в росте, а также уменьшение челюстей и зубов (McHenry and Cofling 2000; Aiello and Wells 2002). Но более высокая доля потребления мяса не могла изменить энергетический базис эволюционирующих гоминин: чтобы обеспечить себя пищей, они должны были полагаться только на собственные мускулы и простейшие стратегии при собирательстве, поедании падали, охоте и рыболовстве.
Отследить происхождение первых инструментов из дерева (палки и дубинки) невозможно, поскольку лишь артефакты этого рода, сохранившиеся в бескислородной среде, чаще всего в болотах, дожили до нашего времени. Однако разрушение мало коснулось камней, которые использовались для изготовления простейших инструментов, и новые находки всё отодвигают назад дату появления первых орудий, сделанных человеком. Несколько десятилетий почти все соглашались, что вероятная датировка подобных объектов – 2,5 миллиона лет назад. Изготовленные из булыжников, сравнительно маленькие и простые олдувайские каменные топоры (ядро и заостренный край), рубила и отщепы облегчали задачу разделки туш животных и расщепления костей (de la Torre 2011). Но позднейшие находки в Ломекви в Западной Туркане, Кения, отодвинули дату появления старейших орудий из камня до 3,3 миллиона лет назад (Harmand et al. 2015).
Около полутора миллионов лет назад гоминины начали изготавливать отщепы большего размера, чтобы делать двусторонние ручные топоры, копья и ножи ашельской (1,2–0,1 миллиона лет назад) культуры. Зачистка одного ядра позволяла получить меньше 20 см острых режущих краев, но умельцы того времени изготавливали самые разные ручные инструменты из камня (рис. 2.1). Деревянные копья были очень нужны при охоте на крупных животных. В 1948 году почти целое копье обнаружили внутри скелета слона в Германии и датировали последним межледниковым периодом (115–125 тысяч лет назад), а в 1996 году метательные копья, найденные в лигнитовом карьере в Шёнингене, датировали 400–380 тысячами лет назад (Thieme 1997). Каменные же наконечники, насаженные на деревянные копья, имеют датировку около 300 тысяч лет назад.
Но новые открытия в Южной Африке отодвинули дату появления многокомпонентных орудий как минимум на двести тысяч лет (Wilkins and co-workers 2012). Исследователи пришли к выводу, что каменные наконечники из Кату Пан сделаны около 500 тысяч лет назад и что их прикрепляли к деревянным копьям. Настоящее длинное метательное оружие эволюционировало в Африке между 90 и 70 тысяч лет назад (Rhodes and Churchill 2009). Другие недавние открытия в Южной Африке показали, что значительные технические усовершенствования – производство маленьких лезвий (микролитов), главным образом из нагретого камня, для использования в составных орудиях – имели место уже 71 тысячу лет назад (Brown et al. 2012). Более крупные составные орудия получили широкое распространение только около 25 тысяч лет назад (граветтская культура в Европе) с появлением сложных тесал и топоров и с развитием более эффективной технологии отщепывания кремня, давшей множество остроконечных орудий: гарпуны, иглы, пилы. Горшечное дело и изготовление предметов из тканых волокон (одежда, сети, корзины) тоже появились в это время.
Рисунок 2.1. Каменные инструменты ашельской культуры, первые изготовленные Homo ergaster, формировались путем удаления каменных отщепов, после чего получались специализированные режущие лезвия (Corbis)
При мадленской культуре (между 17 и 12 тысяч лет назад; названа по имени пещеры Ла Мадлен в Южной Франции, где были обнаружены инструменты) производилось до 12 метров микролезвий из единственного камня, и эксперименты с их современными аналогами (насаженными на копья) показали их пользу в охоте (Petillon et al. 2011). Копье с каменным наконечником стало еще более мощным оружием после изобретения копьеметалок в позднем палеолите. Использование принципа рычага удвоило скорость полета оружия и уменьшило необходимость слишком приближаться к цели. Стрелы с каменными наконечниками распространили эти преимущества еще дальше и обеспечили большую точность.
Мы никогда не узнаем дату, когда огонь впервые начали использовать для обогрева и приготовления пищи: на открытом месте любые релевантные доказательства существования кострищ быстро исчезали по естественным причинам, а в обитаемых пещерах их ликвидировали за поколения повторного использования. Самые ранние данные, на которые мы можем полагаться, понемногу отодвигаются в прошлое: Гудсблом (Goudsblom 1992) называл цифру в 250 тысяч лет назад, но уже дюжиной лет позже фигурировали 790 тысяч лет назад (Goren-Inbar and coworkers 2004), в то время как окаменелости предполагают, что употребление приготовленной пищи имело место уже 1,9 миллиона лет назад. Но безо всяких сомнений, в верхнем палеолите (30–20 тысяч лет назад), когда Homo sapiens sapiens занял в Европе место неандертальцев, использование огня было широко распространено (Bar-Yosef 2002; Karkanas et al. 2007).
Приготовление пищи всегда рассматривалось как важный элемент человеческой эволюции, но некоторые исследователи (Wrangham 2009) считают, что оно оказало «чудовищное» влияние на наших предков. Оно очень сильно расширило список доступной пищи, и кроме того, его освоение повлекло за собой многочисленные физические изменения (включая уменьшение зубов и объема пищеварительного тракта), а также трансформацию поведения (необходимость охранять запасы еды, что обеспечило возникновение защитных связей между мужчинами и женщинами). И в конечном итоге все это привело к комплексной социализации, оседлой жизни и «самоодомашниванию». Всю пищу в доисторические времена готовили на открытом огне, мясо вешали над костром, закапывали в угли, клали на раскаленные камни, заворачивали в шкуры, обмазывали глиной или помещали в кожаные сосуды вместе с водой и раскаленными камнями. Поскольку способов и методов обращения с пищей много, то невозможно определить типичную эффективность конверсии топлива. Эксперименты показывают, что 2-10 % энергии дерева превращается в полезное тепло, и правдоподобные предположения оценивают годовое потребление дерева максимум в 100–150 кг/г. на человека (примечание 2.1).
Примечание 2.1. Потребление дерева при приготовлении мяса на открытом огне
Реалистические предположения при определении вероятного максимума потребления дерева при приготовлении мяса на открытом огне во время позднего палеолита следующие (Smil 2013а): среднее дневное поступление энергии – около 10 МДж на человека (адекватно для взрослых, выше, чем в среднем для популяции), в котором доля мяса 80 % (8 МДж); плотность энергии пищи для трупов животных – 8-10 МДж/кг (типично для мамонтов, в общем 5–6 МДж/кг для крупных копытных); средняя температура окружающей среды 20 °C в теплом и 10 °C в холодном климатах; температура готовки мяса – 80 °C (77° достаточно для хорошо прожаренного мяса); теплоемкость мяса примерно 3 кДж/кг°С; эффективность готовки на открытом пламени всего 5 %; средняя плотность энергии сухой древесины – 15 МДж/кг. Эти числа предполагают среднее дневное потребление около 1 кг мяса мамонта (и около 1,5 кг мяса крупных копытных) на человека и дневную потребность около 4–6 МДж дерева. Общее годовое потребление будет 1,5–2,2 ГДж или 100–150 кг (частично свежей, частично сухой) древесины. Для 200 тыс. человек, живших на Земле 20 тысяч лет назад, глобальная потребность составляла 20–30 тысяч тонн, пренебрежимо малая доля (порядка 8-10 знака после запятой) от всей древесной фитомассы планеты.
Помимо обогрева и приготовления пищи огонь использовали в качестве инженерного инструмента: анатомически современные люди нагревали камни, чтобы они лучше раскалывались, как минимум 164 тысячи лет назад (Brown et al. 2009). Некоторые исследователи (Mellars 2006) предполагают, что существуют доказательства контролируемого выжигания растительности в Южной Африке уже 55 тысяч лет назад. Выжигание леса как инструмент управления окружающей средой охотниками-собирателями раннего голоцена могло помогать в охоте (обеспечивая рост свежей зелени, привлекающей животных, и заодно создавая лучшую видимость), облегчать передвижение или процесс сбора древесных плодов (Mason 2000).
Большое разнообразие археологических находок в пространстве и времени препятствует каким-либо простым обобщениям по поводу энергетического баланса доисторических сообществ. Описания первых контактов с дожившими до нашего времени охотниками-собирателями и их антропологическое изучение дают нам только шаткие аналогии. Информация о группах, проживших в экстремальной окружающей среде достаточно долго, чтобы оказаться объектом изучения современной науки, может быть лишь с оговорками распространена на сообщества доисторической эпохи, развивавшиеся в иных климатических условиях, имевшие более изобильные ресурсы. Более того, многие изученные общины охотников-собирателей уже изменились под влиянием длительных контактов с людьми иного культурного уровня (Headland and Reid 1989; Fitzhugh and Habu 2002). Но отсутствие типичной схемы поиска пищи не мешает нам опознать набор биохимических императивов, управляющих энергетическими потоками и определяющих поведение групп, живущих охотой и собирательством.