Читать книгу Кибернетика и автоматизация транспортных процессов. Учебное пособие - Лев Александрович Зеленов, Л. А. Зеленов, Ирина Николаевна Белобородова - Страница 2

О кибернетике

Оглавление

Кибернетика – это наука о коммуникации и управлении. Он также исследует самовосприятие людей и социальных групп. Это касается того, как человеческая деятельность и общение влияют на коллективное поведение. Социальный контекст кибернетики обширен и продолжает расти. Кибернетика – динамичная и разнообразная область исследований. Новые тенденции и научные открытия повлияют на сферу кибернетики в ближайшие годы.

Слово «кибернетика» – это слово-портфель, объединяющее «кибернетический» с «биологией». Американский математик Джон фон Нейман опубликовал «Автоматы», статью по кибернетике, в которой обрисовал фундаментальную парадигму теории: есть ситуации, которые управляются центральным компьютером. Фон Нейман применил термин «автомат» к любому устройству или системе, которые «могут быть проанализированы как автоматы».

Кибернетика использует целостный подход и работает с коммуникацией на элементарном уровне. Ранние кибернетики также исследовали, каким образом язык влияет на то, как люди взаимодействуют. Темы о том, как общество и люди воспринимают информационные технологии и взаимодействуют с ними, представляют большой интерес. В специальном выпуске «Кибернетики» рассматривается значение и развитие слова «кибернетика». Эти обзоры проливают свет на эту довольно малоизвестную отрасль науки. Несмотря на эти теоретические достижения и новые разработки, эта область все еще малоизучена. Только от 10% до 30% исследователей, работающих в этой области, публикуют более трех статей в год. Исследование, проведенное в 2006 году, показало, что существует тупик в привлечении внимания ведущих журналов к новым исследовательским предложениям.

Прикладная часть кибернетики занимается управлением и движением систем, а также тем, как регулировать или контролировать их поведение. Наряду с теорией систем, статистикой и исследованиями операций, кибернетика является одной из трех основных дисциплин науки и техники и первой научной дисциплиной, имеющей дело с контролем и влиянием на поведение системы. Основная цель широкой области кибернетики – понять и определить человеческий интеллект. Согласно кибернетике, процесс понимания того, как строить и поддерживать человеческий мозг и его интеллектуальные способности, является сложным и многомерным делом.

Кибернетика определяется как изучение взаимодействий между людьми и вещами, изучение взаимодействия между людьми и окружающей их средой, изучение систем, систематизация действий. Важность понимания этих взаимосвязей – вот что сделало кибернетику одной из самых распространенных наук в 20 веке. Научное изучение любого человеческого явления – действия, планирования, защиты, коммуникации и т. д. – было включено в дисциплинарное исследование кибернетики.

Кибернетика была определена по-разному, разными людьми, из самых разных дисциплин. Это широкое понятие, охватывающее многие области. На одном уровне это связано с природой всей жизни; передача и контроль информации внутри биологических систем и между ними. С другой стороны, речь идет об управлении процессами на атомном и молекулярном уровне и сетевых связях между ними.

Автоматизация исследований доказывает, что ключевым нововведением в области машинного интеллекта является достижение или превышение способности людей контролировать данные и управлять ими. Принципиальная роль компьютера (или смарт – машины) не делать расчеты; но управлять информацией, обрабатываемой машиной. Информационная сеть – основа интеллекта. Основная задача ИИ – это разработка систем, которые могут отслеживать сеть и динамически изменять ее соединения для повышения ее производительности в ответ на меняющиеся обстоятельства.

Дискуссия «корреляция против причинности» применительно к кибернетике означает, что нам нужно интерпретировать данные, не поддаваясь картезианскому дуализму. С точки зрения неоклассической экономики, основными движущими силами бизнеса являются субъективные предпочтения людей, движимые стимулами. Эмерджентистская точка зрения – это эмерджентная система, в которой со временем появляются и исчезают разные уровни причинной структуры. Бостром использует эту модель, чтобы увидеть природу интеллекта.

Роботы и другие системы искусственного интеллекта должны развиваться, следуя стратегии обеспечения максимальной отзывчивости системы к окружающей среде. Они должны постоянно приспосабливаться и совершенствоваться, следуя данным им правилам, стратегии, принятой по этой причине, потому что человек-программист не может предвидеть все будущие события. Основанный на правилах характер ИИ является ключевым ингредиентом в его эволюции, а также, другими словами, его целью (хотя эту цель часто упускают из виду). Способность учиться, опираясь на свой опыт (обучение на практике), является фундаментальной для разумного поведения.

Развитие ИИ под руководством людей не будет связано с построением высокопроизводительного «сверхразума»; но об усилении и расширении системы в отношении тех фундаментальных принципов кибернетики, которые мы ожидаем от людей: обучение, адаптация и повторение. Определенное «обучение, чтобы учиться» (программируемость, эмерджентное поведение) является основой кибернетики.

После создания ИИ система должна развиваться, как и любая другая живая система; научившись приспосабливаться к окружающей среде, по мере развития, посредством естественного отбора, что-то вроде дарвиновского процесса. Процесс эмуляции (оценки) имеет решающее значение для того, что происходит в ИИ. Мы можем смоделировать систему ИИ, смоделировав задачу. Мы сделали это, смоделировав шахматную программу. Однако результат ограничен. Он способен воспроизводить только простые виды деятельности, связанные с шахматами. Это возможно, потому что мы ограничили количество вещей, которые система может делать. Мы только смоделировали вывод программы.

Невозможно создать робота, если мы сначала не поймем базовый процесс, с помощью которого система учится, создавая его, основанный на пробах и ошибках. Чтобы учиться, система должна понимать, что она делает, и иметь некоторую способность обращать вспять процессы, которые она изучает. Процесс развития системы ИИ должен быть копированием более простой системы со своими собственными правилами.

Поскольку мы не разрабатываем «улучшения» наших систем искусственного интеллекта, они развиваются путем копирования какой-либо более простой системы. Адаптивная система не повторяет фиксированную последовательность событий для того, чтобы научиться, скорее, ей необходимо узнать о различных моделях, поведении и привычках. Этот процесс имитации основан на функции «стимул-ответ».

Хорошим примером подражания в действии является принцип адаптивного обучения (или обучения на практике). Это процесс, с помощью которого любая машина, любой компьютер или интеллектуальный агент узнает о том, как ему следует вести себя, на основе своего опыта. Обучение путем подражания похоже на этот принцип, но оно основано на том, что человек (или группа людей) подражает другой группе или человеку, чтобы узнать что-то новое. Эмулируемая группа или человек имеет свои собственные индивидуальные правила работы (правила подражания), которые определяют, какие типы реакций или поведения усваиваются.

Адаптивные эмуляторы (обучение путем эмуляции) играют решающую роль в развитии интеллекта. Это важнейший механизм обучения и развития познания. По словам Бострома, они также будут играть решающую роль в эволюции интеллектуальных систем.

Эмуляция не может научиться, если это не делает наблюдатель, а наблюдатель должен уметь учиться. Это называется лазейкой для наблюдателя. Это простейшее объяснение так называемой проблемы социального интеллекта. На практике лазейка для наблюдателя заставляет эмуляции выглядеть как настоящие интеллектуальные агенты. Но у них есть все присущие им ограничения.

Эмуляция также терпит неудачу, если у эмулируемой системы есть проблемы, о которых наблюдатель не знает. Если наблюдатель не может сказать, что у эмулируемой системы есть проблемы, он не может учиться на этих проблемах.

Это подводит нас к последней проблеме с эмуляцией: обучение с помощью эмуляции – только один из механизмов, с помощью которого интеллектуальные системы могут развиваться. Настоящий адаптивный агент интеллектуален, потому что он разработан, чтобы развиваться с учетом характеристик развивающейся системы.

Эмуляция полезна для обучения тому, как создавать интеллектуальные системы, похожие на интеллектуальные системы. Однако он не может узнать, что интеллектуальная система может и что не может делать, в отличие от интеллектуального агента. Это подводит нас к очень важному вопросу: действительно ли эмуляция является методом изучения сложных интеллектуальных систем?

И для того, чтобы философия дизайна работала, было важно убедиться, что мы можем не только узнавать об адаптивных эмуляторах, но и улучшать их. Поэтому мы тщательно изучили адаптивные эмуляторы и разработали систему, которая могла бы учиться на них. Этот процесс обучения начался с умения определять адаптивные эмуляторы. Затем случайно появился немного лучший метод их идентификации, который позволил нам создать адаптивный эмулятор с очень высокой пригодностью.

Кибернетика развивалась способами, которые отличают кибернетику первого порядка (о наблюдаемых системах) от кибернетики второго порядка (о системах наблюдения) – в частности, кибернетика второго порядка обычно ассоциируется с системами, которые контролируют и действуют друг на друга – и отличается от современной кибернетика в основном в том, что касается вопросов о том, имеет ли рефлексивность или рефлексия объяснительную роль.

В кибернетике явления времени и пространства идентичны физическим явлениям в том, что существуют фундаментальные проблемы теории и измерения.

Концепция кибернетики первого порядка – это концепция наблюдателя. Кибернетика второго порядка – это теоретическая практика кибернетики. Кибернетика второго порядка не делает различий между кибернетикой и моделированием. Этот подход был основополагающим принципом кибернетики применительно к физическим системам. Это также предполагает, что кибернетика – это не модель, а инструмент для понимания явлений и систем.

Кибернетический интеллект может использовать логико-лингвистическую систему для преобразования коммуникационных данных в машинные команды. Такая система может использовать хорошо известное преобразование Фишера-Саймона для преобразования команд в данные. Это позволяет системе напрямую переводить из синтаксических форм, что, в свою очередь, позволяет системе понимать язык в статистическом смысле. Эта идея теоретически предполагает, что кибернетическая система может воздействовать на третью сторону (например, человека), и он может действовать как посредник между человеком и компьютером или наоборот.

Кибернетический автомат – это гипотетическая (хотя и математически возможная) система, имитирующая физическую систему (например, машину).

Дизайн саморегулирующихся систем управления для плановой экономики в реальном времени был изучен в 1950-х годах. Хорошим примером является метод рационального программиста, который утверждает, что метод рационального планирования может использоваться для проектирования систем управления. Этот метод, хотя и несколько абстрагированный, можно понять с точки зрения теории управления с обратной связью. Основная идея, лежащая в основе метода рациональных программистов, заключалась в том, что плановые экономики в реальном времени, подобные тем, которые были разработаны в Советском Союзе, можно было планировать с использованием метода рациональных программистов. Рациональный планировщик управляет системой рациональных правил, думая в терминах программ и систем управления.

В рациональной системе управления планировщик не должен знать обо всех действиях, которые выполняет система. Вместо этого планировщик должен принимать решения на основе наблюдаемых данных и улучшать систему, например, создавая более «рациональные» правила и более «эффективные» механизмы обработки данных. Многие «запрограммированные» системы управления используют обратную связь для автоматического улучшения системы с течением времени. Примеры включают большую часть автоматизации производства и промышленных роботов, а также многие системы управления технологическими процессами.

Кибернетика и автоматизация транспортных процессов. Учебное пособие

Подняться наверх