Читать книгу Фармакотерапия гестоза - Валерий Абрамченко - Страница 4

Глава 1
ЭТИОЛОГИЯ И ПАТОГЕНЕЗ ГЕСТОЗА
КОНЦЕПЦИЯ ПАТОГЕНЕЗА ГИПЕРТЕНЗИВНЫХ ФОРМ ГЕСТОЗА

Оглавление

Артериальная гипертензия возникает вследствие повышения выше нормы содержания Са2+ в мышечных клетках сосудов. Артериальная гипертония беременных вызывается недостатком Са2+, что ведет к уменьшению содержания кальция в межклеточной жидкости. Это ведет к кальциевой перегрузке митохондрий как следствие нарушенной мембранной регуляции цитоплазматического свободного кальция, что в свою очередь создает предпосылки для отклонений в утилизации продуктов обмена, обеспечивающих выработку энергии в митохондриальном аппарате клеток. Последнее может проявиться в дальнейшем гипергликемией, дислипидемией, абдоминальным типом ожирения (рис. 1).

Мембранная концепция патогенеза первичной гипертензии исходит из признания того, что основа гипертензии – нарушение структуры и ионотранспортной функции клеточных мембран, проявляющееся снижением их способности (недостаточности) поддерживать в цитоплазме клеток нормальные величины градиента концентрации важнейших ионов (К+, Са2+, Na+) по отношению к внеклеточной среде.


Рис. 1. Первичная гипертензия. Вариант предполагаемой связи нарушений мембранной регуляции внутриклеточного Ca2+ энергообразовательной функции митохондрий (2) и метаболических нарушений (3), лежащих в основе проявлений метаболического синдрома [Постнов Ю. В., 2000]


Ключевым по значимости и более всего изученным следствием мембранного дефекта является смещение пределов регуляции концентрации свободного кальция цитоплазмы в сторону более высоких, чем в норме, значений с последующим развитием клеточного ресетинг-функциональной адаптации клетки к кальциевой перегрузке.

Благодаря уникальной роли кальция в клеточной физиологии повышенные концентрации свободных ионов кальция в цитоплазме существенно изменяют характеристики Ca2+-зависимых внутриклеточных механизмов, в связи с чем изменяются соотношения клетки с гормонами и нейромедиаторами, т. е. с системой нейрогормональной интеграции.

Появление избытка свободного кальция в цитоплазме клетки изменяет ответ кальцийзависимых внутриклеточных механизмов, в частности систем проведения сигнала от рецепторов к ее исполнительным механизмам. Этим изменяется взаимодействие клетки с симпатической нервной системой, эндокринной и другими системами интеграции. Для сохранения нормальной величины физиологического ответа воздействие гормона или медиатора на клетку должно быть соответственно изменено (обычно оно усилено).

Таким образом, по мнению Ю. В. Постнова (2000), сохраняя функцию в условиях нарушенной мембранной регуляции, клетка работает в новом режиме клеточно-гормональных отношений, названном «перенастройкой», или ресетингом, клетки. Вследствие этого вся совокупность клеток, составляющих ткани, будучи измененной, воздействует на системы нейрогормональной интеграции как бы изнутри – со стороны клеточной мишени, изменяя активность этих систем. Так повышается эфферентная активность симпатической нервной системы, гипоталамо-гипофизонадпочечниковой системы, изменяется функция инсулярного аппарата. Схема дополняется тем, что развитие хронической гипертензии всегда происходит при участии почки, играющей в кровообращении роль баростата. Возросшая активность нейрогормональных систем (прежде всего эфферентного звена симпатической нервной системы), отражая изменения кальциевого гомеостаза на клеточном уровне, позволяет почкам вопреки повышенному системному АД сохранить нормальный объем экскреции солей и воды.

Стабилизация АД на стационарно повышенном уровне, отвечающем особенностям ионотранспортной функции клеточных мембран и соответствующих им метаболических отклонений, реализуется через «перенастройку» (ресетинг) многокомпонентной системы контроля АД и сосудистого тонуса от системы эндотелин-NО-ренин-ангиотензиновой системы до барорецепторного аппарата в кровообращении.

В течение I половины беременности плохое, несбалансированное питание и стрессы вызывают истощение адреналосекреторной деятельности коры надпочечников, а избыток циклического аденозинмонофосфата (цАМФ) ведет к: 1) гиперхолистеринемии, дегенерации ворсинок хориона; 2) избытку альдостерона, вызывающему задержку натрия и воды; 3) увеличению в крови ангиотензина, повышающего АД, что вызывает рост внутриклеточного Са2+ и спазм гладкомышечных клеток сосудов; 4) вазопрессиноподобному действию на почечные канальцы, что ведет к задержке воды в организме беременной женщины.

Дегенерация ворсинок ведет к недостатку прогестерона. Прогестерон заменяется кортизолом, вызывая еще большее истощение коры надпочечников и, в тяжелых случаях, некроз. Во II половине беременности увеличивающийся недостаток Са и гипокальциемия в межклеточном пространстве ведут к проникновению избыточного Са2+ в гладкомышечные клетки сосудов, вызывая спазм сосудов, и преганглионарные симпатические нейроны с высвобождением избыточных количеств ацетилхолина. В постганглионарных адренергических нейронах избыток ацетилхолина ведет к дополнительной секреции α-адренергических катехоламинов с высвобождением большего количества Са2+ в гладкомышечных клетках сосудов, что приводит к усилению спазма сосудов и артериальной гипертонии. Повышение содержания Са2+ в поперечно-полосатых мышцах вызывает судороги мышц.

Такова общая конструкция патогенеза первичной гипертензии беременных, составляющая основу мембранной концепции. Она показывает, что артериальная гипертензия – это естественное и непременное качество конкретного организма, обусловленное особенностями клеточного метаболизма, и делает понятным, почему действие известных лекарственных гипотензивных средств всегда транзиторно, а высокое давление неминуемо возвращается к прежнему уровню после их отмены.

Гестоз (отеки, нефропатия, преэклампсия, эклампсия, протеинурия, гипертонический синдром) рассматривается как единое явление. Беременная женщина является превосходной клинической моделью для изучения гипертонии, которая может развиваться в острой молниеносной форме в течение нескольких недель и затем исчезать через несколько недель после окончания беременности.

Предполагается, что недостаток кальция может служить причиной развития гестоза. Эпидемиологические исследования показали, что у беременных женщин, потреблявших кальцийсодержащие продукты в большом количестве, реже бывает гестоз, даже у беременных с низким социальным уровнем и при отсутствии пренатального наблюдения. Экспериментальные исследования этих авторов на лабораторных животных также показали, что артериальная гипертензия развивается при недостаточном потреблении кальция и исчезает при нормализации его потребления вместе с пищей.

Согласно современным воззрениям отечественных авторов, показана роль митохондриальных нарушений в механизме энергетического дефицита. Как известно, в митохондриях осуществляется сопряжение процессов окисления и фосфорилирования с образованием аденозинтрифосфорной кислоты (АТФ). В то же время сведения о митохондриях клеток при первичной гипертензии очень немногочисленны.

Митохондрии, как буферная система поддержания оптимально низкой (10– 7 м) концентрации свободного кальция в цитозоле в силу хронической кальциевой перегрузки клеток, обусловленной недостаточностью ионотранспортной функции мембран при гипертензии, настроены на регулирование в цитозоле клеток более высоких концентраций кальция (Са2+), имея соответственно и более высокую, чем в норме, концентрацию этого иона в митохондриальном матриксе (Са2+).

Постоянно повышенный уровень аккумуляции Са2+ митохондриями при гипертензии вызывает в них ряд нарушений, важнейшим следствием которых является снижение синтеза АТФ и развитие структурных изменений митохондрий, прослеженных на экспериментальной модели первичной гипертензии.

Интенсивная аккумуляция митохондриями избытка цитозольного Са2+ при гипертензии, сопровождающаяся затратой энергии на выкачивание протонов в цитоплазме и соответствующим снижением продукции АТФ, носит постоянный характер. Происходящее при этом «сжигание» АТФ для обеспечения механизма аккумуляции Са2+ сопровождается повышенным образованием побочных токсических продуктов работы дыхательной цепи, в частности супероксида свободных гидроксильных радикалов, способных повреждать молекулы белка, липидов и нуклеиновых кислот. Это составляет основу механизмов повреждения митохондриального аппарата при первичной гипертензии.

Одновременно нарушение клеточной энергетики составляет звено, объединяющее мембранные нарушения и метаболический синдром.

Патофизиологические изменения при гестозе могут быть подразделены на две фазы: в 1-й фазе, примерно в I половине беременности, проявляющейся действием избыточного цАМФ, происходит гиперплазия коры надпочечников, их гиперфункция и истощение; во 2-й фазе, характеризующейся действием избыточного клеточного Са2+, которое наступает ко II половине беременности после геморрагии и некроза коры надпочечников.

Основным нарушением функции клеток, ведущим к гипертензии, является длительный спазм гладкомышечных клеток — артериол.

Механизм возникновения этой дисфункции во время беременности в результате действия различных гормонов и Са2+ является предметом развиваемой нами концепции гестоза.

Оптимальная суточная потребность кальция составляет для беременных и кормящих 1200 мг.

Концентрация кальция во вне- и внутриклеточной жидкости поддерживается в очень узких пределах, что жизненно важно для нормального функционирования физиологических систем. Этот элемент находится преимущественно вне клетки.

Его внутриклеточная концентрация составляет около 1/10000 от концентрации вне клетки. Нервное проведение, сокращение мышцы и свертывание крови зависят от нормального содержания кальция.

Кальций находится в крови в ионизированном состоянии (Ca2+), а также в связанной с белками форме и образует комплексы с различными отрицательно заряженными соединениями. Около 50 % общей концентрации представлено свободной или ионизированной формой кальция. Ионизированный кальций биологически активен и играет ключевую роль в осуществлении нервно-мышечной передачи и свертывании крови. Внеклеточный ионизированный кальций находится в равновесном состоянии с резервной формой кальция, депонированной в костях. Концентрации кальция и фосфата во внеклеточной жидкости взаимосвязаны: приблизительно сохраняется величина произведения растворимостей этих двух ионов.

Механизмы, участвующие в поддержании нормальной концентрации ионизированного внеклеточного кальция, регулируют его абсорбцию в желудочно-кишечном тракте, экскрецию почками и процессы обмена в костях. Организм защищает себя от гипокальциемии, увеличивая его абсорбцию в желудочно-кишечном тракте, уменьшая почечную экскрецию и повышая скорость разрушения костей и деминерализации. Высокие концентрации кальция во внеклеточном пространстве приводят к снижению его абсорбции в желудочно-кишечном тракте, увеличению экскреции почками и усилению минерализации костей.

В процессе эволюции появилась клеточная мембрана для защиты клетки от окружающей среды и для поддержания ионного баланса межклеточной жидкости в состоянии, подобном тому, при котором развивалась жизнь на Земле.

В высокой концентрации Са2+ является токсином для клетки, и при резком повышении концентрации Са2+ клетка немедленно умирает. Практически при всех энзиматических взаимодействиях используется Са2+, но в очень малых количествах. Имеется специальный клеточный механизм, поддерживающий гомеостаз Са2+. В мембране есть каналы, благодаря которым Са2+ может проникать через мембрану. При этом кальциевые каналы являют большое разнообразие по сравнению с натриевыми каналами. С точки зрения филогенеза считается, что Са-каналы гораздо древнее, чем натриевые каналы, и в процессе развития они появляются всегда раньше.

В плане механизма действия Са2+ важно учитывать, что, во-первых, мембрана в покое очень слабо проницаема для Са2+, поэтому не требуется больших затрат энергии для поддержания оптимального уровня Са2+, во-вторых, имеется Са-насос, или Са2+-Mg2+-АTФaзa, который выкачивает Са2+ из клетки в межклеточное пространство.

Повышение содержания Ca2+ внутри клетки приводит в действие мембранный Са-насос, контролируемый Са-кальмодулином. Тогда в норме концентрация Са2+ внутри клетки понижается, клетка таким образом защищается от токсического воздействия высокой концентрации Са2+.

Митохондрии и эндоплазматический ретикулум в гладких мышцах играют главную роль в клеточном Са-гомеостазе.

Перенос Са2+ из цитоплазмы в пространство матрикса митохондрий требует затраты энергии и может совершаться в больших количествах, в то время как перемещение из матрикса лимитировано и совершается пассивно. Если концентрация Са2+ в цитоплазме повышается, например вследствие продолжительного воздействия мессенджера (агента), тогда Са2+ в большом количестве поступает в митохондрии и большая его часть остается здесь в ионизированном состоянии. Наконец, достигается какой-то постоянный уровень, при котором обмен Са2+ между митохондриями и цитоплазмой происходит таким образом, что содержание Са2+ в цитоплазме сохраняется лишь на несколько более высоком уровне, чем в клетке в состоянии покоя. Если все же концентрация Са2+ продолжает оставаться повышенной, Са2+ начинает поступать в митохондрии или в эндоплазматический ретикулум быстрее, чем выводится из них, и происходит насыщение митохондрий. Когда способность митохондрий поглощать Са2+ истощается, избыточное содержание Са2+ приводит к дисфункции клетки и, наконец, к ее гибели.

Фармакотерапия гестоза

Подняться наверх