Читать книгу Каталитический риформинг бензинов. Теория и практика - Валерий Александрович Спиридонов, Валерий Александрович Ларченко, Юрий Федорович Лачуга - Страница 8

Глава 6. Кинетика реакций платформинга

Оглавление

Уравнение Аррениуса.

Быстрые и медленные реакции.

Почему происходит увеличение скорости реакции циклизации при переходе от н-гексана к н-гептану.

Кинетический и термодинамический контроль реакций риформинга.

Структурно-чувствительные и структурно-нечувствительные реакции


Термодинамика устанавливает принципиальные ограничения на направление и максимальную глубину химического превращения. Равновесная степень химического превращения является предельно возможной величиной, которая может быть получена при условии достижения химического равновесия при данных давлении и температуре.

Реально достижимая степень превращения может быть ниже, если достижение химического равновесия невозможно из-за существования кинетических барьеров в виде высоких энергий активации реакции.

Зависимость константы скорости реакции от температуры описывается уравнением Аррениуса, где экспоненциальный множитель представляет собой долю молекул, обладающих кинетической энергией не менее Еа при данной температуре Т:


где Kо – предэкспоненциальный множитель; Еа – энергия активации; R – универсальная газовая постоянная; Т – температура, К.

Значения энергии активации для ряда реакций платформинга, кДж/моль, представлены ниже:

– изомеризация парафиновых и нафтеновых углеводородов – 105,

– дегидрирование парафиновых и нафтеновых углеводородов – 84,

– дегидроциклизация парафинов – 145,

– крекинг – 185,

– коксование – 145 [50].

На рис. 12 приведены значения относительных скоростей реакций платформинга при температуре 500 С для различных парциальных давлений водорода.

Базовым уровнем является скорость дегидрирования, ее значение принято за 100 %.

Крекинг здесь представлен как сумма реакций гидрогенолиза и гидрокрекинга.

Для реакции образования кокса скорость при парциальном давлении водорода 10 бар принята за единицу.


Рис. 12. Скорость реакций платформинга

Дегидрирование нафтенов является самой быстрой реакцией платформинга, ее скорость в 7–8 раз превышает таковую для реакции изомеризации парафиновых и нафтеновых углеводородов и примерно в 30 раз скорость реакций крекинга и дегидроциклизации.

Реакция образования кокса является самой медленной реакцией платформинга.

Для реакций дегидроциклизации и крекинга константы скорости зависят также от длины углеродной цепи и увеличиваются при ее росте.

Особенно резкое увеличение констант скорости наблюдается для реакции дегидроциклизации при переходе от н-гексана к н-гептану, что объясняется статистическим фактором, а именно увеличением количества вариантов замыкания цепи.

Дегидроциклизация н-гексана в условиях бифункционального катализа протекает по схеме:


Лимитирующей стадией этих превращений является циклизация олефина с образованием 5-членного кольца.

Природа высокого энергетического барьера этой реакции может быть обусловлена циклической структурой активированного комплекса, являющегося переходным состоянием химической системы на ее пути от реагентов к продуктам реакции.

В соответствии с теорией активированного комплекса константа скорости реакции


где ΔH# и ΔS# – это изменение энтальпии и энтропии системы при образовании активированного комплекса.

Очевидно, что при образовании циклического комплекса энтропия системы уменьшается. Оценка изменения энтропии может быть сделана по изменению энтропии реакции циклизации.

Результаты представлены ниже в сравнении с изменением энтропии реакции изомеризации н-гексена-1 в 2-метилпентен-1 (табл. 4).

Таблица 4

Изменение термодинамических параметров при 800 К


Параметр

Изомеризация

С5-циклизация

С6-циклизация


ΔrG

ΔrH

ΔrS

–9500

+9400

+0,2

–15 600

–60 300

–56,0

–8300

–84 200

–94,8


Из данных табл. 4 следует, что при циклизации происходит значительное уменьшение энтропии. Применяя эти цифры для активированного комплекса, найдем отношение констант скорости реакции циклизации и изомеризации – 0,0012. Расчет отношения констант скоростей по энергиям активации дает такие же значение – 0,0012. Совпадение скорее случайное, но даже такой грубый расчет показывает, что вклад энтропии образования активированного комплекса может быть определяющим фактором низкой скорости С5-циклизации.

Увеличение скорости циклизации при переходе от н-гексана к н-гептану приводит к существенному увеличению селективности ароматизации алкана.

В табл. 4 представлено также изменение энтропии реакции при С6-циклизации 2-метилпентена-1: в этой реакции происходит еще более значительное уменьшение энтропии.

Если применить аналогичный подход для оценки отношения констант скорости двух альтернативных маршрутов циклизации, получим величину отношения С65, равную 0,01. Это коррелирует с кинетическими данными, в соответствии с которыми С5-циклизация является главным маршрутом дегидроциклизации парафиновых углеводородов риформинга на бифункциональном катализаторе.

Механизм циклизации достоверно не установлен.

В соответствии с гипотезой Гейтса [2], циклизация протекает по согласованному механизму с участием кислотного бренстедовского и основного льюисовского центров:


,

где А – кислотный бренстедовский центр; В – льюисовский основный центр.

Альтернативная гипотеза предполагает участие только льюисовских центров и поддерживается рядом экспериментальных фактов: отсутствие эффекта ингибирования азотом реакции циклизации, но ингибирование реакции расширения цикла. Известно также, что реакция циклизации может быть затруднена при увеличении влажности, что связывают с превращением льюисовских центров в бренстедовские.

При термодинамическом контроле направление и выход продуктов химического превращения определяются величиной и знаком изменения энергии Гиббса.

В случае кинетического контроля основным продуктом превращения является продукт реакции с меньшей энергией активации. Примером может служить превращение олефинов на кислотных центрах катализатора риформинга.

Из двух возможных химических реакций – изомеризации и гидрокрекинга – основным продуктом превращения является олефин, хотя его образование сопровождается меньшим понижением энергии химической системы. Превращение олефинов на кислотных центрах в условиях кинетического контроля обеспечивает высокую селективность процесса риформинга. Увеличение кислотности катализатора, повышение температуры процесса, увеличение времени контакта будет благоприятствовать протеканию реакции гидрокрекинга и снижению селективности ароматизации сырья.

Примером превращения, протекающего под термодинамическим контролем, является реакция изомеризации алканов, рассматривающаяся как совокупность параллельных реакций, каждая из которых приводит к образованию определенного изомера. Скорости реакций примерно одинаковы, и состав продуктов суммарного превращения определяется стремлением химической системы минимизировать энергию Гиббса.

В зависимости от того, что контролирует превращение, термодинамика или кинетика, зависит эффект, достигаемый от изменения температуры процесса.

Попытка увеличить скорость реакции изомеризации применением более высокой температуры и получить за счет этого более высокий выход изомеров приводит к обратному результату, так как реакция находится в равновесии, а для равновесной экзотермической реакции увеличение температуры уменьшает Kр.

В случае дегидроциклизации парафиновых углеводородов, еще одного примера кинетического контроля, повышение температуры, наоборот, является основным технологическим приемом интенсификации процесса риформинга парафинистого сырья.

В некоторых случаях желательным является снижение температуры и при осуществлении равновесных эндотермических реакций. Изомеризация метилциклопентена в циклогексен – это равновесная эндотермическая реакция, и для нее


повышение температуры увеличивает конверсию. Однако эта реакция сопровождается крекингом нафтенов, реакцией, контролируемой кинетикой, и для нее увеличение температуры приводит к возрастанию скорости реакции, что означает ухудшение селективности реакции изомеризации. В таком случае снижение температуры в головном реакторе платформинга или проведение процесса при еще более низкой температуре в дополнительном реакторе, устанавливаемом после сырьевого теплообменника или конвекционного змеевика комбинированной печи, позволяет минимизировать нежелательные реакции крекинга и может быть эффективным приемом при переработке нафтенового сырья.

Понятие о структурно-чувствительных и структурно-нечувствительных реакциях риформинга введено Бударом и Тэйлором. К структурно-нечувствительным относят реакции, удельная скорость которых остается постоянной при изменении состава поверхности и размера частиц активной фазы, координационного числа поверхностных атомов, природы носителя.

Реакции гидрирования-дегидрирования алканов и циклоалканов и изомеризации алканов С6 и выше принято относить к структурно-нечувствительным, а реакции гидрокрекинга, гидрогенолиза углерод-углеродной связи, изомеризации алканов С4 и меньше, изомеризации метилциклопентана, дегидроциклизации н-гептана, а также реакции образования кокса являются структурно-чувствительными [47].

Как правило, структурно-чувствительные реакции связаны с разрывом С–С-связей, активирование которых на платине не так успешно, как С–Н-связей. Поэтому эти реакции имеют более высокие энергии активации, что объясняет их предрасположенность к протеканию на ансамблях, состоящих из нескольких адсорбционных центров.

Отнесение реакции к тому или иному типу достаточно условно. Так, в [102] было установлено снижение активности в реакции дегидрирования циклогексана при переходе от 0,3%Pt/Al2O3 к биметаллическим катализаторам 0,3%Pt, 0,3%Re/Al2O3 и 0,3%Pt, 0,3%Sn/Al2O3.

Для Pt–Sn-катализатора снижение составило 23 %.

Учитывая, что содержание платины в катализаторах не менялось, этот результат можно объяснить разбавлением поверхностных атомов платины вторым металлом и уменьшением размера каталитического ансамбля, то есть структурной чувствительностью реакции, обусловленной проведением тестов на активность при сравнительно низкой температуре (400 С), недостаточной для активирования молекулы на одиночном адсорбционном центре.

Каталитический риформинг бензинов. Теория и практика

Подняться наверх