Читать книгу Моделирование - Валерий Федорович Альмухаметов - Страница 3

БАЛАНСНЫЕ МОДЕЛИ (ТРАНСПОРТНАЯ ЗАДАЧА)

Оглавление

Этот тип задач относится к классу балансных моделей, они имеют особенности: ограничения заданы в виде уравнений, каждое из неизвестных входит в два уравнения, коэффициенты при неизвестных равны единице.

Пример решения задачи

Постановка задачи: В хозяйстве за время уборки при заготовке кормов необходимо перевезти 4000 т. кормов с пяти полей к четырем фермам, в том числе с первого поля 600 т., второго 240 т., третьего 1360 т., четвертого 1000 т. и пятого 800 т. Для первой фермы требуется 600 т. кормов, второй 800 т., третьей 1400 т. и четвертой 1200 т. Известно расстояние от каждого поля до каждой из ферм.

Требуется составить такой план перевозок, который обеспечил бы минимальные транспортные затраты.

Таким образом, количество перевозимого груза точно равно потребности, следовательно, ограничения задаются уравнениями (закрытая модель). Открытая модель всегда должна приводится к закрытой путем введения фиктивного пункта отправления или потребления. Перевозки производятся от каждого поля к каждой из ферм, следовательно, каждое неизвестное входит в два уравнения.

Число базисных неизвестных в задачах этого типа должно равняться M+N-1, где M- количество пунктов отправления, а N- количество пунктов назначения. Если условие по числу неизвестных в задаче выполняется, то план задачи называется невырожденным, иначе вырожденным и в этом случае в план вводят дополнительные небазисные неизвестные с нулевыми исходными значениями.

Для решения транспортной задачи составляется расчетная таблица, включающая в строках, например, перечисление полей, в столбцах, например, перечисление ферм. Предпоследняя строка – это потребность ферм в кормах, предпоследний столбец – это наличие кормов на полях, последний столбец и строка предназначены для дополнительных, необходимых для решения задачи, коэффициентов. В правом верхнем углу каждой ячейки таблицы указаны расстояния между полями и фермами.

1.Первый опорный план строим разными методами:

Методом “северо-западного угла”, заполнение клеток таблицы при этом начинается с левого верхнего угла. В этой ячейке указывается величина перевозимой массы с учетом ограничений по предпоследней строке и предпоследнему столбцу таблицы. Производится переход к следующей, соседней ячейке.

Методом наилучшего элемента в строке: в первой строке выбирается ячейка с наименьшим значением расстояния и с учетом ограничения по строке или столбцу производится заполнение, затем вторая строка и так далее. При наличии в строке клеток с одинаковыми значениями выбирается та, где будет произведено наибольшее по значению действие.

Моделирование

Подняться наверх