Читать книгу Birds and Nature Vol. 9 No. 2 [February 1901] - Various - Страница 7
SOME THINGS WE MIGHT LEARN FROM THE LOWER ANIMALS
ОглавлениеMan has been instructed in many things by lower animals, but there is yet much to be learned. It is said that the first suspension bridge across the Niagara was constructed after the plainest sort of hint from a spider. Yet we have never found the name of Mr. Spider cut upon the buttresses of a bridge. Who knows but that the builders of the pyramids of ancient Egypt copied their engineering plans from the ants who for generations had pursued similar methods in the architecture of their cities? Spiders had been ballooning for many centuries before man swung his first parachute to the breeze. In fact, there is a species of spider, which, although they have no wings, are able to spin for themselves a sort of apparatus by means of which they navigate the air; yet man, with all his boasted intelligence, has not accomplished this, even with the most complicated machinery. So I might go on to suggest many mechanical and economic contrivances used by lower animals, some of which man has copied but many of which he has as yet been unable to equal.
Before the first potter of old had fashioned a vase or a jug the Eumenes fraterna had constructed his dainty little jugs of mud. But the making of jugs is not the only art man might learn from this little wasp. Upon examination we find the jug filled with small green caterpillars. After depositing her egg Mrs. Wasp thus provides for her baby when it shall appear upon the field of action. Now the peculiar part of this proceeding to which I wish to call attention is that the worm is not dead, but is merely in a comatose state. If it had been killed it would have putrified and entirely disappeared before the young wasp was hatched. Furthermore, the young wasp is fond of fresh caterpillar steak, preferably from the living animal. So Mrs. Wasp must have a method of preserving the fresh living victim for her rapacious progeny next spring, while he is too young to hunt for himself, and while the caterpillars are still securely hiding in their mummy cases, Mrs. Wasp finds the venturesome young caterpillar crawling somewhere, and pouncing upon him, carefully inserts her sting into the nerve ganglia that are located in a line along his dorsal surface. We don’t know how she learned the exact location of the ganglia and that a few well-directed stabs will produce more effect than hundreds of misdirected thrusts in other parts of the body, but it is certainly true that she selects the very segments in which the ganglia are located to inflict the wound. And she had the location of these nerve centers for a long time before biologists made the discovery. What a fine thing it would be for the biologist if he could learn the secret of thus preserving living animals instead of the stiff, discolored and uninteresting alcoholic specimens. Then think of the economic value of such a discovery. Animals could be fattened in summer at much smaller expense and then injected and set away until needed. We would have no more difficulty in providing our armies with beef on the hoof, and fresh meat could be shipped at much less expense over long distances, as no ice would be necessary. We would have no more complaint of embalmed beef and putrid canned goods.
The common mud wasp that builds in old garrets fills his nest with a species of spider much relished by the young wasp and exhibits much judgment in supplying exactly the right number to provide for the growing wasp until he is able to sally forth and seize prey for himself. These spiders – often seventeen or eighteen of them – are stupefied in the same manner as in the case of the potter wasp, and are living when the young wasp begins his repast. This habit is peculiar to many species of wasp and is, I think, worthy of careful study. I wish I had space to tell of the almost fiendish ingenuity that certain parasites show in maintaining themselves at the expense of their hosts.
The ground hog has a knack of spending his winter in a way that is at once economical and pleasant. They generally hibernate in pairs, rolling themselves up into balls. They do not seem to breathe or to perform any of the life functions during their long six months’ sleep. There is, I fear, no foundation of fact for the ancient fiction of the ground hog appearing and making weather prognostications on the second of February. A gentleman writing in the New York Sun of some years since says: “I took the trouble once to dig into a woodchuck’s burrow on Candlemas day, and a warm, cloudy day it was; just such a day when the ground hog is said to come out of his hole and stay out. I found two woodchucks in the burrow, with no more signs of life about them than if they had been shot and killed. From all outward appearances I could have taken them out and had a game of football with them without their knowing it.”
Nor is it true that hibernating animals live upon their accumulated fat, for digestion, as well as other active life processes, ceases. Hibernating animals always begin their long sleep upon an empty stomach, and food injected into their stomach is not digested. The fat disappears, it is true, but it is not in any strict sense digested. Any experienced hunter is aware that unless the entrails are removed from the shot rabbit the fat will disappear from about the kidneys. The fat may, and no doubt does, assist in some way in the long sleep. It may act as fuel to keep up the right living temperature. At any rate, it is true that hibernating animals eat voraciously and grow very fat just before they go to sleep. It is a peculiar fact that many hibernating animals bring forth their young during this period. This is especially true of woodchucks and bears. It is a common experience with hunters that only male bears are killed during the winter season.
Mr. Andrew Fuller of Ridgewood, New Jersey, according to the article above quoted, had an interesting experience with a pair of Rocky Mountain ground squirrels. After missing them for a month he accidentally found them curled up under some straw, apparently frozen stiff. He brought them to the house to show his wife the misfortune that had befallen his pets. Soon they seemed to thaw out and scampered about as lively as ever. No sooner were they put out in the cold than they resumed their sleep, which continued all winter, their bodies maintaining a fairly constant temperature, seldom falling below three degrees above the freezing point of water. They came out in the spring as chipper as if they had been asleep but one night. Many hibernating animals will if wakened by being placed in a warm room, eat eagerly, but they soon show a desire to resume their nap.
The Loir, a peculiar little native of Senegal, never hibernates in its native clime, but every specimen brought to Europe becomes torpid when exposed to cold. The common land tortoise – wherever he may be and he is a voracious eater of almost anything – always goes to sleep in November, and wakes some time in May.
Just as in the north numerous animals hibernate upon approach of cold, so in the south there are species that may be said to estivate during the hottest weather. While the northern animals curl up so as to retain heat, his southern cousin straightens out as much as possible to allow the heat to escape from all parts of the body.
But it was not my intention to write an essay upon hibernation and allied phenomena, but merely to speak of it as a subject that should be investigated. What a splendid arrangement it would be for the poor, the sick, and the melancholy folk if they could just hibernate for six months occasionally.