Читать книгу На передних рубежах радиолокации - Виктор Млечин - Страница 2

Вместо введения

Оглавление

Каждый человек, который когда-либо брал в руки радиоприбор и пользовался им, знаком с понятием «помеха». Помехой может оказаться просто плохой контакт между соединениями схемы, отсутствие надлежащего заземления шасси прибора, фон сети, проникающий из-за недостаточной фильтрации источника питания. Существуют помехи и другого рода, например помехи, связанные с замиранием сигнала на трассе его распространения, попадание в полосу пропускания вашего прибора паразитных излучений соседней станции или находящейся неподалёку промышленной установки. Все эти помехи в основном относятся к классу неорганизованных помех. Но наибольший интерес представляет собой класс организованных помех. Когда возникает межличностный конфликт или конкуренция между деловыми компаниями, а свои разногласия они пытаются разрешить путём создания взаимных радиопомех, то такие действия можно отнести к классу организованных помех внутри гражданского общества данной страны. Значительно опаснее использование арсеналов организованных помех в военных конфликтах между государствами. Опаснее потому, что точность наведения современного оружия всё более возрастает, а средства транспортировки этого оружия обеспечивают незамедлительную доставку его практически в любую точку дислокации. Основным переносчиком информации при наведении оружия на цель являются электромагнитные волны, диапазон использования которых к настоящему времени впечатляюще расширился и простирается от длинноволновой части спектра до области рентгеновского излучения. В связи с этим резко увеличивается роль оборонительных мероприятий по защите объектов от нападения, среди которых важное место занимают средства по искажению или разрушению передаваемой информации, что может привести к существенным помехам или срыву атаки. Учитывая, что основным инструментом получения точных координат поражаемой цели является радиолокационная станция (РЛС), задача противорадиолокационных средств состоит в нарушении работы одного или нескольких каналов наиболее существенно влияющих на точностные характеристики РЛС. Переводя разговор на профессиональный язык, должны быть сформированы помеховые сигналы или их сочетания, нарушающие функционирование каналов РЛС с заданной вероятностью. Но на любое помеховое воздействие другая сторона может ответить нейтрализующими мерами. Так возникает проблема «щита и меча», которую с учётом специфики применения часто именуют радиоэлектронной борьбой (РЭБ). Соперничество в межгосударственных отношениях с использованием радиоэлектронной техники началось почти одновременно с изобретением радио. В тот период времени усилия специалистов были направлены на обеспечение устойчивой радиосвязи, и неудивительно, что в 1905 г. во время русско-японской войны радисты русского флота впервые в мире создали активные помехи сетям радиосвязи японских кораблей.

Дальнейшее совершенствование радиоэлектронной техники привело к созданию новых средств радиосвязи, а также устройств воспрепятствования (блокирования) радиосвязи и к возникновению новых направлений, таких как радиолокация. Этим объясняется то, что в годы Второй мировой войны для повышения эффективности защиты бомбардировочной авиации Англии и США от немецких ПВО, использовавших РЛС управления зенитной артиллерии, широко применялись пассивные и активные средства РЭБ, что значительно снижало потери боевых самолётов.

В те же годы в СССР были созданы специальные радиодивизионы для глушения (подавления) немецких радиостанций, что позволило во время Сталинградской битвы блокировать связь между верховным командованием немцев и окруженной армией Паулюса.

Такова была предыстория. История для меня началась в послевоенный период. Любая разработка, с которой мне приходилось иметь дело, требовала учёта не только действующих помех, но и предвидения наиболее опасных угроз внешнего или внутреннего характера, серьёзно снижающих потенциальные возможности разрабатываемой аппаратуры.

Конечно, я подходил к решению этих проблем постепенно. В 1948 г. я был распределен в Центральный научно-исследовательский институт радиолокации (ЦНИИ-108). Пришел вместе с группой выпускников радиофакультета МАИ для стажировки и подготовки дипломного проекта. Попал в 13 лабораторию, которой руководил А. А. Расплетин, имя которого сейчас хорошо известно. По-видимому, единственный раз в своей богатой производственной деятельности Александр Андреевич взялся за руководство дипломным проектом студента-выпускника. На основе общей практики после успешной защиты и получения диплома инженера в 1949 г. выпускников МАИ зачисляли в штат института. И хотя особой инициативы я не проявлял, т. к. усиленно в это время вникал в суть поставленных задач, по представлению А. А. Расплетина и указанию руководства института я был оформлен в штат 13 лаборатории еще в 1948 г. Поначалу занимался чисто локационными вопросами: мощностями, дальностью, точностью, разрешающей способностью. Но время диктовало, и я смещался в сторону более сложных задач. К 2007 г. вместе с предыдущей работой на кафедре радиолокации МАИ мой трудовой стаж приблизился к 60 годам.

За долгие годы работы мне нередко приходилось встречаться с возникающими вызовами и участвовать в решении многих задач, которые в той или иной степени можно отнести к области РЭБ. Однако рассказать обо всех этих проблемах я, конечно, не смогу по ряду причин. Во-первых, часть этих проблем до сих пор закрыта по соображениям секретности, во-вторых, некоторые подробности, связанные с возникновением самой проблемы, мною изрядно подзабыты, и чтобы их вспомнить, нужно по крайней мере значительное время, и, наконец, в-третьих, объём изложения может существенно превысить ограниченный размер данного повествования. Поэтому коснусь некоторых ключевых вопросов. Одна из таких проблем, которую можно условно назвать проблемой малых высот, связана с действием пассивных и комбинированных (т. е. пассивных и активных) помех. Наименование проблема получила из-за того, что на малых высотах локация малоразмерных целей сильно затруднена фоном подстилающей поверхности в виде неровностей рельефа, складок местности, обильной растительности, искусственных строений или в виде морских волн. Малоразмерная наземная цель или летательный аппарат на малой высоте проходят через систему обороны маскируемые отражениями от местных образований. Эта проблема была первоочередной 60 лет назад и, несмотря на прогресс техники, сохраняет свою актуальность в наши дни. Проблему решают с помощью аппаратуры селекции движущихся целей (СДЦ). Кстати, системы СДЦ используют не только на малых высотах, но и в более широком интервале высот, например, для борьбы с таким видом пассивной помехи, как отстреливаемые с летательных аппаратов пачки дипольных отражателей.

Я начинал разработку систем СДЦ для подвижных наземных РЛС в интересах сухопутных войск во второй половине 50-х годов в связи с заказом на работу «Рейс». В качестве формирователя скоростной характеристики была выбрана цепочка из линий задержки с прямыми и обратными связями. Линий с большим временем задержки, умеренным затуханием и малыми паразитными отражениями никто в институте не брался изготовить, и я обратился к смежникам, которые спустя некоторое время прислали несколько образцов ультразвуковых линий на основе магниевого сплава. Аппаратура на базе этих линий была создана, прошла лабораторные и полигонные испытания и показала возможность регулирования скоростных характеристик для различных тактических ситуаций. Однако теория таких систем была в то время ещё в зачаточном состоянии. Для начала необходимо было определиться с исходным сигналом, в качестве модели которого была выбрана последовательность видеоимпульсов с амплитудной модуляцией (АИМ). Теория дискретных цепей на линиях задержки, выполненная на базе так называемого z-преобразования, показала, что подобные схемные образования действуют по отношению к огибающей импульсов также как обычные непрерывные цепи к мгновенным значениям входного сигнала. Это означает, что возможно, например, формирование резонансных контуров, пропускающих лишь последовательность импульсов, огибающая которых находится в пределах полосы пропускания контура вблизи резонанса. Важным при этом является выделение областей устойчивости таких цепей. Элементы теории были опубликованы в ряде изданий в 60-х годах, привожу лишь две ссылки[1].

Работа велась малым составом. Кроме меня в ней участвовали ещё 1–2 человека, которые помогали в проведении лабораторных и полигонных измерений. Средняя величина подавления сигнала пассивной помехи составляла примерно 25 дБ, что было удовлетворительно по тем временам.

Как выяснилось позже, в те годы (конец 50-х – начало 60-х годов) в КБ-1 была создана сильная группа разработчиков аппаратуры СДЦ для выделения сигналов низколетящих самолётов на фоне мощной пассивной помехи в интересах зенитно-ракетного комплекса (ЗРК).

Ещё одна проблема, которую хочу упомянуть, состоит в правильном выборе средств РЭБ на основе тщательного анализа текущей радиолокационной и помеховой обстановки. Неудачный арсенал выбранных средств, как и недооценка помехового фактора вообще, могут привести к плачевным результатам. Сошлюсь на несколько примеров, часть которых относится к области международных отношений.

Первый эпизод произошёл 1 мая 1960 г. Однако ему предшествовали определённые события. В середине 50-х годов шло строительство оборонительного комплекса ПВО вокруг Москвы. Это сильно будоражило руководство США. Для получения нужной им информации решили использовать авиацию. Попытки прорыва самолётов на средних высотах были пресечены. В срочном порядке был дан заказ фирме «Локхид» на строительство нового высотного разведсамолёта, которому дали шифр «U-2». В связи с возможностями прорыва самолётов-разведчиков на больших высотах (более 20 км) в конце 1954 г. было созвано совещание, в котором приняли участие от КБ-1 Б. В. Бункин, от ракетчиков – главный конструктор П. Д. Грушин. Присутствовали маршалы Г. К. Жуков и Л. А. Говоров. По воспоминаниям Б. В. Бункина в ответ на цифру высоты перехвата целей в 18 км, которую на том этапе могли обеспечить конструкторы, Л. А. Говоров воскликнул: «Этого мало. Нам надо 25 км». И такая высота перехвата была достигнута. Вот почему 1 мая 1960 г. самолёт-разведчик U-2, пилотируемый лётчиком ВВС США Ф. Г. Пауэрсом, проникший со стороны Афганистана, был сбит на высоте 22 км в районе Свердловска ракетой ЗРК С-75. Пауэрсу тогда повезло, т. к. он сумел выбраться из обломков самолёта и опустился на землю на парашюте. Что же выяснилось впоследствии? Оказывается, что U-2 был укомплектован станцией активных помех, настроенной не на борьбу с ЗРК, действие которого они никак не ожидали на таких высотах, а на атаки советской истребительной авиации с применением систем «воздух-воздух». Так была решена проблема «больших высот».

Провальный инцидент с американским самолётом-разведчиком, широко освещавшийся в мировой печати, послужил поводом для анализа потенциальных возможностей существовавших тогда средств РЭБ. В 1961 г. в США вышла книга американского инженера Роберта Шлезингера под названием «Principles of electronic Warfare». Слово «warfare» словари толкуют и как столкновение, и как борьба, и как приёмы ведения войны. Наше издательство, выпустившее эту книгу на русском языке, дало ей предельно жёсткое название – «Радиоэлектронная война». Войны, слава богу, не случилось, но это позволило сопоставить мнение советских специалистов с господствовавшим в то время в США для того, чтобы развивать технику РЭБ в соответствии со складывавшейся международной обстановкой.

Ещё один случай недооценки реальной радиолокационной обстановки произошёл на Кубе, в разгар Карибского кризиса. 27 октября 1962 г. американский высотный самолёт-разведчик U-2 нарушил воздушную границу Кубы и сразу же был обнаружен средствами ПВО. Ввиду отсутствия ответного сигнала госопознавания, находившийся на Кубе расчёт ЗРК С-75 получил команду на уничтожение. Самолёт был сбит двумя ракетами и упал в 12 км от позиции ЗРК. Пилот Р. Андерсон погиб. На следующий день были открыты советско-американские переговоры, завершившиеся урегулированием Карибского кризиса.

Скептическое отношение к помеховой тематике и её возможностям нередко и в среде отечественных разработчиков. «Мы всё можем, никакие помехи нам не страшны» – вот лейтмотив подобных суждений. Характерный эпизод приводит в своих воспоминаниях учёный секретарь НПО «Алмаз» Е. М. Сухарев. На полигоне, на 35-й площадке вблизи Балхаша, проводились в начале 60-х годов испытания РЛС подсвета цели (РПЦ) системы С-200. Для проверки помехозащищенности РЛС с аппаратурой помех приехали сотрудники 108 института во главе с тогдашним директором П. С. Плешаковым. И хотя меня на полигоне тогда не было, ситуацию хорошо помню, т. к. был участником этой разработки. Об обстановке и ходе работ подробно рассказывали приехавшие с полигона Б. Д. Сергиевский и Ю. Н. Беляев. Кроме обследования действия помех на РПЦ конечной целью было исследование возможностей срыва слежения одного из важнейших контуров станции. Производились облёты с установленной на борту носителя аппаратурой помех. И хотя помеха в приёмнике фиксировалась, эффекта поначалу не было. Шли обсуждения. Причин произошедшего могло быть несколько, но, главная, по-видимому, состояла в нестыковке параметров.

Некоторые представители принимающей стороны высказывались в том смысле, что времени на проведение исследования причин у нас нет, ресурсы ограничены, давайте зафиксируем отрицательный результат, а дома проведём доработку. По сути, это была одна из форм неверия в возможности средств противорадиолокации. Неожиданно выступивший А. А. Расплетин предложил настроить аппаратуру помех под параметры РПЦ, объясняя свою позицию тем, что будущий противник всегда сможет этого добиться. Стыковочные работы закончились тем, что срывы слежения за счёт действия помех стали непреложным фактом.

Ещё одна проблема, к которой хотелось бы привлечь внимание, заключается в необходимости теоретического осмысления сложного взаимодействия помехи и системы, работу которой помеха призвана нарушить, с одной стороны, и каковы меры защиты от помех, с другой стороны. Некоторые практики-разработчики аппаратуры порой резко негативно относятся к самой перспективе заниматься теорией, с их точки зрения, неблагодарным делом. «Ещё мне копаться в математике, да я десять раз всё это проверю опытным путём», – рассуждают они. Я, как старый практик, в ряде случаев соглашаюсь с ними. Ибо зачем излишне теоретизировать там, где простейший эксперимент быстро может дать ответ на возникший вопрос. Но современная техника такова, что даже многократно проведённое экспериментальное обследование может завершиться тупиковым результатом. И даже сложное, иногда весьма разветвлённое электронное моделирование не в состоянии учесть некоторые скрытые нюансы, которые сравнительно просто выявляются несложными математическими выкладками. И это тем более справедливо, когда нужен системный подход к задаче и требуются обобщённые результаты.

Существует множество теоретических работ, исследующих воздействие различных помех на те или иные радиотехнические устройства. Но мне не удалось найти в достаточно обширной библиографии обобщённого труда, исследующего с единых позиций результаты воздействия широкого класса типовых помех на типовые радиотехнические системы и устройства. В этом вопросе имеется ряд трудностей, которые, возможно, и явились одним из оснований отсутствия подобных работ. Перечислю некоторые из них. Так как сигнал помехи является в целом случайным процессом, необходим статистический подход к проблеме. Наиболее важным объектом помехового воздействия представляются замкнутые системы, ввиду того, что их функционирование наиболее опасно для обороняющейся стороны. Наконец, ещё одна трудность для теоретического анализа состоит в нелинейности радиотехнических систем.

Я неоднократно обсуждал эту проблематику с наиболее продвинутыми в помеховой тематике специалистами 108 института – А. В. Загорянским и Б. Д. Сергиевским, высказывая пожелание, чтобы они взяли на себя тяжёлую ношу по созданию такой обобщённой теоретической работы. А. В. Загорянский, в принципе не отвергая этой идеи, был перегружен текущими заказами. Кроме того, я знал, что болезнь, которой он давно страдает, подтачивает его силы, что, может быть, и ограничивало его творческие возможности. Б. Д. Сергиевский являлся автором многочисленных статей и отчётов, но когда заходила речь о переходе к этапу обобщения, он отмалчивался, по-видимому, что-то его сдерживало.

В конце 80-х – начале 90-х годов, будучи загруженным сугубо практическими, в том числе полигонными, работами, я заинтересовался регрессионным анализом, который наиболее ярко отражён в трудах нашего крупного учёного в области теории вероятности и матстатистики В. С. Пугачёва. Вообще, регрессия даёт возможность произвести оценку неизвестного случайного процесса Y(t) по результатам наблюдения другого случайного процесса Х(t). В более точном смысле регрессия определяется как условное математическое ожидание М[Y(t,X)] и служит оптимальной оценкой зависимости Y(t) от X(t).

Что может дать использование регрессионных моделей? Предположим, что на вход замкнутой системы автоматического управления, например на вход следящей системы, поступает простейшая помеха в виде аддитивного шума (от слова «add» – добавить, приложить). Случайный процесс, который возникнет в системе под действием помехи, будет зависеть не только от линейных параметров, заложенных в системе, но и от нелинейных её свойств. В результате аддитивный шум преобразуется в мультипликативный, а в контуре системы создаётся нелинейное звено множительного типа, именуемое мультипликативной нелинейностью (МН). Линейная регрессионная модель для МН характеризуется прямой зависимостью от приложенного шума; параметры зависимости, как и погрешность данной оценки, должны быть определены для каждой конкретной схемы.

Анализ одноконтурной системы с МН был обобщён на многоразмерные и многоконтурные системы. Наряду с непрерывными контурами удалось рассмотреть различные модификации дискретных систем, что прокладывает путь к исследованию нелинейной цифровой техники, работающей в помеховом режиме. Немаловажно то, что выбранный метод позволил провести тщательное исследование устойчивости системы и определить условия, при которых под действием помехи происходит срыв слежения. Кроме замкнутых систем анализу подвергались разомкнутые классы систем в режиме действия мультипликативной помехи. Утилитарность выбранного подхода дала возможность исследования статистической динамики типовых радиотехнических систем и устройств. Собранные материалы составили довольно объёмную книгу, выпущенную несколько лет назад одним из московских издательств[2]).

Далее я хотел бы затронуть ряд принципиальных вопросов, касающихся всего цикла разработки новой аппаратуры.

Прежде всего, должна быть чётко поставлена цель разработки и разъяснены обстоятельства, при которых возникла необходимость в создании будущего изделия. Если имеется постановление правительства или государственный заказ, то предполагается, что проведены соответствующие согласования и разработчик может опираться на вполне официальный документ и помощь со стороны курирующих ведомств. Другое дело, когда задание выдаёт головное предприятие или некая фирма и вы находитесь в положении подрядной организации или в лучшем случае соисполнителя. В этой ситуации разработчику приходится иногда проверять заказчика на наличие авторитета и гарантию деловых связей. Разработчик при любом заказчике должен тщательно изучить переданное ему техзадание, выявить в нём слабые стороны, спрогнозировать возможные отклонения, произвести анализ комплектации и требований к ней с учётом её недопоставок. В мои годы мы в основном работали на базе правительственных постановлений. Но вот начались лихие 90-е годы, финансирование внезапно прекращалось; сотрудникам массово не платили зарплату. На фоне такого положения некоторым предлагали заказы, полученные от дальних зарубежных стран. Ввиду безденежья отдельные специалисты соглашались. Я всегда отказывался. Мотивировка простая: я родился в СССР, учился и работал в России, знания и опыт отдавал России и ни на кого другого работать не буду.

После получения техзадания необходимо приступать к решению поставленной задачи. Надо было искать оптимальный вариант, а он, как правило, на поверхности не проглядывался. Значит, нужны были свежие мысли и движения в сторону новых идей. Собственно, этим и приходилось заниматься в промежутках времени между лабораторными работами и полигонными испытаниями. Идеи иногда рождались неожиданно или как результат анализа предыдущего опыта – положительного либо негативного. В редких случаях я шёл от аналогичных решений в смежных областях, но после долгих раздумий приходил к мысли о том, почему именно их невозможно применить к решению поставленной задачи. Обычно я проверял правильность начального посыла новой идеи двумя путями: с помощью выбора аппарата анализа и на его основе – простейших математических выкладок и, второе, с помощью самых простых электронных схем. Конечно, это было только начало, далее следовала серьёзная проработка. Приведу очень кратко несколько примеров решаемых в своё время технических задач.

50 лет назад стала актуальной задача выделения внутренней структуры в целом неизвестного радиосигнала. Известным было лишь то, что несущая сигнала находилась где-то в довольно широком интервале сантиметрового диапазона радиоволн. Нужно было у этого неизвестного радиосигнала определить закон угловой модуляции. Эта задача тогда была решена путём введения СВЧ линии задержки и сдвига несущей приходящего сигнала[3].

В книге вышеупомянутого мной американского автора Р. Шлезингера рассказывается об уводящих помехах по дальности и скорости. Однако ещё раньше, когда эти помехи вошли у нас в оборот, совершенно неясно было, каковы их эффективность, как её усилить и, главное, как от них защититься. Вместе с моими помощниками нам удалось предложить ряд новых идей по усилению действия этого вида помех и способов защиты от них. Применительно к ЗРК группой специалистов КБ-1 были найдены иные пути решения задачи защиты от увода, о чём сообщается в их книге[4].

Ещё один вопрос, возникший на заре создания средств РЭБ, связан был с развитием номенклатуры ретрансляционных передатчиков помех. Дело в том, что входящие в тракт ретрансляции лампы бегущей волны (ЛБВ) имели очень ограниченный индекс фазовой модуляции (ФМ), что не позволяло получать глубокие отклонения частоты ретранслируемого сигнала (т. е. большие девиации) и сдерживало формирование эффективных помех. Нам с В. В. Шишляковым удалось разработать способ, названный способом «псевдочастотной» модуляции, с помощью которого на базе ФМ можно было получать глубокую девиацию частоты (вплоть до сотен тысяч Гц и более). Ныне подобный метод излагается в учебных изданиях[5].

Меня мои молодые коллеги часто спрашивали: «Сколько у вас изобретений?» Раньше я особо не обращал внимания на подобные вопросы, т. к. просто не было времени рыться в архивах. Но вопросы поступали, и, прикинув, я отвечал: «Около 100». Затем уточнял: «Более ста», теперь, думаю, более ста пятнадцати. Много это или мало? Не знаю. Иногда мне казалось, что мог бы больше. Но всегда понимал, что кроме нового, неожиданного решения нужно самому убедиться, что эффект действительно есть, а другим доказать осуществимость по технике если не сегодня, то в ближайшем будущем. Это большая работа, и на неё требуется много времени. С другой стороны, конечно, осознавал, что в истории сохранились имена изобретателей, учёных или простых испытателей, новации которых пережили века. Одно или два изобретения сделал человек и обессмертил себя. С такими тягаться невозможно. Поэтому нет однозначного ответа на подобные вопросы.

Но вот изделие идейно оформилось, схема приняла завершённые черты. Надо воплощать наработанное в конструкцию. Некоторые молодые радиоинженеры полагают, что на отладке схемной части их функции заканчиваются. «Пусть затем работают конструкторы», – рассуждают они. Такая точка зрения на самом деле бьёт по автору изделия, ибо нет схемы без конструкции, но и нет радиоконструкции без схемы. В принципе, радиоспециалист должен владеть основами механики, понимать на надлежащем уровне, какую конструкцию он желает получить. Так вышло, что, будучи выпускником радиофакультета, я на ранних курсах сдавал ряд дисциплин, связанных с механикой, в т. ч. теорию механизмов и машин и детали машин. Помню до сих пор, что ТММ сдавал самому академику И. И. Артоболевскому, учёному с мировым именем. Конечно, многие черты дисциплины изрядно подзабыты, но, как кажется, до той поры, пока не взял учебник в руки.

Теперь о полигонных испытаниях. Чуть свет встаёшь вместе со всей командой, садишься на Уазик и после изрядной тряски прибываешь к месту работы. Сначала устанавливаешь первичную сеть, затем включаешь аппаратуру. После настройки проводишь измерения и, если всё в порядке, начинаешь поддерживать связь со своим корреспондентом, который находится где-то рядом на земле, на вышке, летательном аппарате или на корабле. Поработал, а время бежит, и уже призыв к обеду: если не успеешь, останешься без еды. Затем снова работа. Всегда считал, что именно на стадиях полигонных испытаний находишь скрытые слабости, недостатки того, что вроде бы работает нормально, прикладываешь усилия для устранения дефектов. Я бывал на многих полигонах, участвуя в испытаниях, объездил значительную часть страны: с севера на юг и с запада на восток.

Конечно, во всех поездках были свои приключения. Приходилось приспосабливаться к разным условиям работы и климатическим особенностям. Спал на Севере в мёрзлых кунгах, на Юге – в раскалённых после дневной жары вагончиках. А так обычно – в заводских гостиницах, ведомственных общежитиях, полигонных домиках или коттеджах. Расскажу не о себе, а о том, что часто забавляло сотрудников 13 лаборатории, которую в разные годы возглавляли А. А. Расплетин и Г. Я. Гуськов. Был у нас ведущий инженер С. В. Хейн, безотказный в работе и которому очень доверял А. А. Расплетин. И вот, приехав на полигон с аппаратурой летом в Одесский военный округ, С. В. Хейн сел в тени, под деревом, отдохнуть. Был он в пальто, с надетой на голову шляпой, и к тому же в очках. Проходящие в штаб части офицеры особого внимания на него не обращали. Но вот направлявшийся туда же сотрудник военной контрразведки усмотрел в сидящем подозрительном человеке шпиона и арестовал его. Потом в 13 лаборатории все смеялись, а С. В. Хейн с улыбкой добавлял некоторые подробности своего ареста. Другой случай произошёл с тем же С. В. Хейном, но уже в Закарпатском военном округе. Шли войсковые учения, объяснения по технике давал С. В. Хейн. И вот к нему в кабину вошёл командующий артиллерией Советской армии генерал М. И. Неделин. Он увидел картинку на экране индикатора РЛС, и у него возникли вопросы. Кроме общих вопросов генерала (впоследствии маршала) интересовали конкретные данные о параметрах станции, на что С. В. Хейн старался давать весьма уклончивые ответы. Генерал заходил и с той и с другой стороны, но С. В. Хейна расшевелить не удавалось. Тогда Неделин сказал: «Товарищ Хейн, я же главнокомандующий, мне можно». Потом этот эпизод долго разыгрывался сотрудниками 13 лаборатории.

1

В. В. Млечин «Частотный анализ дискретных цепей на линиях задержки». М., Радиотехника и электроника, 1966, Т. XI, № 7; В. В. Млечин «Устойчивость дискретных цепей на линиях задержки». М., Радиотехника и электроника, 1969, Т. XIV, № 8.

2

Млечин В. В. Теория радиоэлектронного преодоления. – М.: Радиотехника, 2009. – С. 1–973.

3

В. В. Млечин. Изобретение по а.с. 471673.

4

60 лет НПО “Алмаз” М.: Унисерв. 2007.

5

Ю. М. Перунов, К. И. Фомичёв, Л. М. Юдин «Радиоэлектронное подавление информканалов систем управления оружием, М., Радиотехника, 2003.

На передних рубежах радиолокации

Подняться наверх