Читать книгу Системный подход к управлению высокотехнологичными проектами - Виктор Юрьевич Николенко - Страница 5
Раздел I.
Что такое системная инженерия
1.2. Жизненный цикл системы и определение системной инженерии
ОглавлениеОсновным объектом приложения системной инженерии являются системы. Кратко: система есть интегрированный сплав людей, продуктов и процессов, обеспечивающий возможность удовлетворить требуемые нужды или цели.
Примеры систем (по возрастанию сложности):
• двигатель самолета по сравнению с набором деталей;
• самолет с двигателями и авионикой;
• самолет с внешними топливными баками;
• авиатранспортная система (АТС) с самолетами, пассажирами, грузами, тренажерами и др.;
• система систем: АТС + аэропорт + инфраструктуры обслуживания и наземного наблюдения.
Перечислим некоторые известные типы систем. Это бизнес-системы (управление исследованиями и разработками, производством продуктов и услуг для использования на рынке), образовательные системы (обучение), финансовые системы (поддержка личных, коммерческих и других финансовых операций), правительственные системы (связанные с управлением людьми как обществом на уровне государства, области, муниципалитета и т.д.), медицинские системы (больницы, врачи и терапевтические учреждения, управляющие потребностями здравоохранения населения), транспортные системы (наземные, морские, воздушные и космические перевозки людей и грузов), газо- и нефтеперекачивающие системы, городские системы (управление инфраструктурой района, города, области), культурные системы (исполнительское искусство музыки и других развлечений, гражданские модели поведения) и др.
У каждой системы имеется жизненный цикл (ЖЦ, life cycle): ЖЦ – это совокупность взаимоувязанных последовательных изменений состояния изделия (системы), связанных с реализацией установленных процессов от начала разработки до вывода из эксплуатации (утилизации).
Введем еще два определения из прикладного стандарта ГОСТ 56136—2014:
– этап жизненного цикла (life cycle milestone): часть ЖЦ, выделяемая по признакам моментов контроля (контрольных рубежей), в которых предусматривается проверка характеристик проектных решений типовой конструкции и (или) физических характеристик экземпляров изделий.
– контрольный рубеж (КР) этапа жизненного цикла (milestone/decision gate): момент завершения этапа ЖЦ, в котором предусматривается проверка характеристик проектных решений типовой конструкции и (или) физических характеристик экземпляров изделий.
Модель жизненного цикла системы представляет собой структуру, состоящую из упорядоченных, взаимосвязанных, формализованных процессов, работ и задач, выполнение которых является необходимым и достаточным условием существования системы во времени и которые охватывают жизнь системы от момента замысла до прекращения использования.
Проект можно разбить на отдельные фазы, отделенные контрольными рубежами (воротами принятия решений). У NASA 7 фаз ЖЦ, в GE их 10, у Airbus в ЖЦ 14 последовательных этапов. Пример ЖЦ системы показан на рис. 1.2.
Этапы жизненного цикла используются, чтобы помочь планировать и управлять всеми основными событиями разработки высокотехнологичной авиационной, космической или другой сложной системы или продукта.
Декомпозиция проекта на этапы жизненного цикла переводит организацию процесса разработки на более мелкие и управляемые части. Переход фазовых границ определяется в пунктах оценки прогресса проекта и решений типа «идти/не идти».
Рис. 1.2. Этапы жизненного цикла системы (пример)
То есть на контрольном рубеже следует принять решение, продолжать ли проект на следующем этапе, «вернуться к чертежной доске» и переделать текущую работу завершаемой фазы или прекратить проект.
Перечислим основные фазы жизненного цикла продукта и типовые контрольные рубежи (КР), или ворота принятия решений, на различных этапах модельного жизненного цикла программы создания воздушного судна, показанные на рис. 1.2.
А. Инициация
Предварительный анализ изделия (КР 0)
Определение бизнес-возможности разрабатываемого продукта (КР 1)
Б. Формирование содержания программы
Концептуальное проектирование и оценка выполнимости (КР 2)
Определение облика изделия, эскизный проект (КР 3)
Представление ВС и процессов его создания (КР 4)
В. Фаза реализации программы
Утверждение («замораживание») конструкции (КР 5)
Изготовление опытных образцов (КР 6)
Летные испытания, сертификация (КР 7)
Начало поставок в эксплуатацию (КР 8)
Модернизация (КР 9)
Эксплуатация и завершение серийного производства (КР 10)
Г. Завершение программы
Вывод из эксплуатации и завершение программы (КР 11)
Так как ранние решения влияют на последующие деятельности и «более зрелую» систему труднее изменить по ходу проекта, в системной инженерии сделанное на ранних стадиях имеет наибольшее влияние на успех проекта в целом.
При разработке систем, продуктов или услуг необходимо найти ответы на несколько фундаментальных вопросов:
1. Что такое система?
2. Что входит в границы системы?
3. Какую роль играет система в организации пользователя?
4. Какие действия в эксплуатации выполняет система?
5. Какие ориентированные на результаты выходы дает система?
В истории человечества следы системно-инженерного подхода заметны при сооружении египетских пирамид, римских дорог, азиатских ирригационных каналов и других известных объектов, дошедших до наших дней. Так, «подушку» под римской дорогой для колесниц укладывали по правилам того времени до 5 метров толщиной из различных материалов. Спустя столетия эти дороги заасфальтированы и используются для современных автомобилей. Каменные мосты через реки в некоторых голландских городах используются без ремонта на протяжении 300—400 лет. Т.е. выполнено условие заботы о жизненном цикле продукта в целом – действия на каждой фазе ЖЦ системы были направлены на улучшение жизненного цикла на последующих этапах.
Великий российский инженер XIX—XX веков Владимир Шухов за годы работы реализовал со своими подрядными коллективами более 700 проектов. При этом уровень работ находился на вершине тогдашних инженерных знаний, оформлены патенты мирового уровня – горизонтальный и вертикальный паровые котлы, форсунка для мазута, нефтеналивная баржа, стальной цилиндрический резервуар, висячее сетчатое покрытие для зданий, арочное покрытие, нефтепровод, промышленная крекинг-установка, ажурная гиперболоидная башня (телецентр на Шаболовке в Москве), построено около 200 башен, около 500 мостов, зерновые элеваторы, доменные печи, плавучие ворота сухого дока, вращающаяся сцена МХАТ.
План ГОЭЛРО в послереволюционной России был утвержден в декабре 1921 г. и к 1930 г. перевыполнен, в результате Россия вышла на 3-е место в мире по производству электроэнергии.
Еще один первопроходец, американец Альберт Кан, реализовал в 1929—1932 гг. на объектах в СССР методику скоростной разработки архитектурно-строительной проектной документации. Проектирование гигантских заводов выполнялось не за 1,5—2 года, а в 10 раз быстрее – за 2—2,5 месяца. Применены быстрое создание из стандартных деталей универсального строительного объема, принципы модульности, идея стандартизации чертежей. Проектные решения для быстрой реализации увязывались с сортаментом конструкций и монтажно-техническими возможностями подрядных фирм. В США фирма штатом в 400 человек готовила рабочие чертежи за неделю, а корпуса промышленных предприятий возводила за пять месяцев. В СССР за 3 года построено 520 объектов, большинство из которых используется и сейчас.
Причинами возникновения системной инженерии в ее сегодняшнем виде стали факторы, появившиеся в мире после Второй мировой войны. Активизировалась реализация больших программ, в первую очередь военно-промышленного направления, и основными приводами развития управленческой мысли стали:
1. Развитие затратных программ high-tech с учетом управления рисками и информационных технологий;
2. Активизация рыночного соревнования между странами и компаниями (развитие маркетинга);
3. Углубление специализации разрабатываемых систем, что выявило важность типовых декомпозиции элементов, управления интерфейсами, верификации и валидации и др.;
4. Нарастание кадровых проблем для высокотехнологичных отраслей.
Как следствие, появились книги, справочники и стандарты по теме: H. Good, R. Machol, Системотехника. Введение в проектирование больших систем (1957 г.), справочник Военно-воздушных сил США по системной инженерии (1966 г.), MIL-STD 499 (первый стандарт СИ, 1969 г.). В СССР один из первых курсов СИ был издан в 1976 г.: В. Дружинин, Д. Конторов «Вопросы военной системотехники».
Примененные технологии системной инженерии облегчили получение конкурентоспособных разработок, переход на командные методы работы (по ролям) упростил создание результативных коллективов. Для реализации этих задач необходимо было обучить многочисленный персонал. Его подготовку также удалось ускорить c учетом принципов системной инженерии. Сегодня все компании высокотехнологичного сектора имеют справочники системной инженерии в открытом доступе в сети интернет, адаптированные под нужный профиль (в перечне указан год актуального издания книги):
– Космическое агентство NASA, США – 2017.
– Европейское космическое агентство ESA – 2009.
– Некоммерческое общество системных инженеров INCOSE Handbook, изд. 4 – 2015.
– Администрация гражданской авиации США (FAA) – 2015.
– Компания-интегратор интеллектуальных транспортных систем ITS, изд. 3 – 2009.
– Министерство обороны США, DoD – 2006.
– Компания-интегратор авиационной техники Boeing – 2003.
– Компания-интегратор авиационной техники Airbus – 2004.
– Генеральный штаб ВВС США (USAF) – 2009.
При этом перечисленные документы включены для обязательного исполнения в требования для подрядчиков и поставщиков. Так обеспечивается скорость и глубина внедрения методологического подхода.
Страны БРИКС совершили за два последних десятилетия резкое ускорение в развитии. Вследствие необходимости создания новых изделий и освоения высоких технологий им удалось стандартизовать подготовку творческих сотрудников на основе подходов СИ.
Приведем одно из определений Системной Инженерии (CИ), важное для последующего изложения. СИ есть процесс междисциплинарного инженерного менеджмента для развития и проверки набора интегрированных, сбалансированных по жизненному циклу системных решений, которые удовлетворяют нужды заказчика.
Данный процесс завершается интеграцией трех основных активностей:
• фаза разработки, которая контролирует процесс проектирования и обеспечивает базовые результаты, увязывающие проектные усилия;
• системная инженерия процесса, обеспечивающего структуру для решения проектных проблем и отслеживающего поток требований через проектные усилия;
• интеграция жизненного цикла, которая вовлекает заказчиков в проектный процесс и обеспечивает жизнеспособность разработанной системы по всем стадиям ЖЦ.
Обращаем внимание читателя, что в определении сделан упор именно на управленческую часть системно-инженерного подхода, чему и посвящена настоящая книга. Применение подхода СИ на практике позволяет выполнять вовремя решение сложнейших задач, сокращать сроки и стоимость разработок в 1,5—2 раза, снижать количество ошибок в конструкторской документации от 2 до 5 раз.
Для реализации проектов и программ используются основные варианты декомпозиции в системной инженерии:
• Декомпозиция проблемы – разделение сложной проблемы на более простые позволяет легче найти решение и четко сформулировать задачи для каждого сотрудника.
• Декомпозиция времени – разбиение проекта на фазы с указанием конкретных результатов позволяет эффективно контролировать процесс разработки, измерять эффективность и вовремя применять корректирующие меры.
• Декомпозиция продукта – разделение самых сложных продуктов на системы, сегменты, сборки и узлы позволяет эффективно управлять конфигурацией и поставщиками.
• Декомпозиция действий с последующей интеграцией – позволяет определить четкую последовательность необходимых действий: требования, спецификация, декомпозиция, проект, интеграция, верификация, эксплуатация, вывод из эксплуатации.
Результатом применения системной инженерии будет повышение качества исполнения программ (выполнение проектов в заданные сроки, в рамках бюджета, согласно ТЗ, с высоким качеством). Для реализации данного подхода на СИ выделяется статья в бюджете программы.
Системная инженерия демонстрирует эффективность разработанных подходов, является выгодным инструментом создания новых изделий, ведет к уменьшению затрат путем оптимизации процессов и исключения переделок (из-за увеличения глубины проработки и исправления ошибок на ранних стадиях проекта). Подход СИ снижает коэффициент экспоненты убытков на масштабе бюджета проекта, причем чем крупнее проект, тем выше эффект применения СИ. Статистика NASA показала, что можно снизить перерасход бюджета на 20—90% (от мелких до очень крупных проектов). При этом оптимальная доля затрат на деятельность системных инженеров составит от 5 до 35% соответственно.
Системная инженерия обеспечивает возможность реализации коллективных усилий по формированию и осуществлению набора процессов, необходимых для управления ЖЦ объекта, включая замысел, реализацию, эксплуатацию и утилизацию. Она позволяет эффективно организовать работу интегрированной команды проекта (integrated product team, IPT) и дает набор правил (мультидисциплинарный подход), когда все члены команды знают, что делать для успеха проекта. В системно-инженерном процессе эффективно используется множество типовых инженерных инструментов и методов.
В стандарте «Процессы жизненного цикла систем» ISO 15288:2015 (ГОСТ Р 57193—2016) сегодня перечислены 30 базовых процессов жизненного цикла систем (рис. 1.3).
Рис. 1.3. Базовые процессы жизненного цикла систем
Указанные процессы разделены на четыре основные группы. Компоненты и используемый инструментарий управления промышленным предприятием при создании продукта включают интегрированный набор основных практик и инструментов, совместно используемых на разных этапах управления жизненным циклом (УЖЦ).
При создании инновационных продуктов пункты вклада системной инженерии можно разложить по основным составляющим:
• технический менеджмент;
• организационные вопросы программ;
• технические инструменты и методы.
При разработке нового продукта требуется организовать структуру, которая оптимизирует управление и руководство, облегчает внутренний обмен информацией, принятие решений и потоки поставок. Рынки высоких технологий требуют от нового продукта удовлетворения уровня качества при запланированных расходах и, что критично, в заданные сроки. Координация инжиниринга, производства, обеспечения качества, маркетинговых функций в процессе разработки нового продукта является жизненно важной. Необходимость использования подходов системной инженерии обусловлена несовершенством используемых ранее процессов разработки новых изделий.