Читать книгу Идущие по пустыне: время - Виталий Тихоплав - Страница 4
Глава 1
О самоорганизующихся системах
О втором законе термодинамики
Оглавление– А чем вам не нравится второй закон термодинамики?
– Ну, хотя бы тем, что Больцман[2] повесился.
Классическая термодинамика изучает закрытые системы, которые не обмениваются со средой веществом, энергией и информацией.
Именно по отношению к закрытым системам были сформулированы два начала термодинамики. В соответствии с первым началом в закрытой системе энергия сохраняется, хотя может приобретать различные формы. Второе начало термодинамики – раздела физики, изучающего превращения энергии во всех ее формах (теплота, работа, электричество и др.), формулируется так: все естественные процессы в природе сопровождаются ростом энтропии[3] – функции состояния термодинамической системы, характеризующей меру преобразования порядка в беспорядок (хаос, деградация).
Иными словами, второе начало (закон) термодинамики устанавливает наличие в Природе фундаментальной асимметрии, то есть однонаправленности всех происходящих в ней самопроизвольных процессов. Такая однонаправленность означает, что все виды энергии во Вселенной необратимо превращаются в теплоту, которая, в свою очередь, передается от тел более нагретых к телам менее нагретым. В результате температура всех тел во Вселенной выравнивается на низком уровне и наступает так называемая «тепловая смерть», обусловленная прекращением всех форм движения материи.
Британский химик Питер Эткинс пишет: «Основываясь на втором начале термодинамики, мы считаем, что качество энергии неуклонно понижается; по мере того как она все более вырождается и наступает состояние хаоса, все события и явления становятся существенно необратимыми. Энергия диссипирует[4] везде и всегда; мир – это средоточие явлений вырождения. Мы – дети хаоса, и глубоко в основе каждого изменения скрыт распад. Изначально существует только процесс рассеяния, деградация; все захлестывает волна хаоса, не имеющего причины и объяснений. В этом процессе отсутствует какая-либо изначальная цель, в нем есть только непрерывное движение» [1].
Лучше передать суть второго начала термодинамики просто невозможно. Вот этот процесс деградации энергии, стремление всего окружающего нас Мира и нас самих к хаосу, к распаду, к смерти и характеризуется ростом энтропии.
Одним из наиболее видных ученых, стремящихся распространить принцип возрастания энтропии на Вселенную, следует признать Л. Больцмана, который дал статистическое толкование второго начала термодинамики. Больцман рассмотрел Вселенную как механическую систему, состоящую из огромного числа частиц и существующую неизмеримо долго. В этой системе наиболее вероятными являются состояние равновесия и, как его следствие, смерть. Менее вероятны, но принципиально возможны случаи, когда в отдельных областях системы возникают неравновесные состояния. Такие вспышки жизни возникают (по Больцману) в различных областях Вселенной и в разное время. В любой момент времени имеются области, в которых разгорается жизнь и в которых она затухает. Мы живем в той области Вселенной, где происходит замирание жизни, поэтому для наших условий характерно возрастание энтропии. В других областях, где имеет место вспышка жизни, энтропия должна уменьшаться.
Иными словами, чтобы сохранить второе начало и энтропию, Больцман предложил нам такое развитие Вселенной, где жизнь миров представляет собой кратковременные вспышки на фоне всеобщей смерти [2]. Второй закон термодинамики, закон возрастания энтропии, описывает мир как непрестанно эволюционирующий от порядка к хаосу.
Однако астрофизик, доктор физико-математических наук Н. А. Козырев в результате многолетних теоретических и экспериментальных исследований мироздания пришел к выводу: «Во Вселенной же нет никаких признаков деградации, которая вытекает из второго начала. Мир сверкает неисчерпаемым разнообразием, мы не находим в нем и следов приближения тепловой и радиоактивной смерти. Следовательно, мы должны признать, что в Природе существуют постоянно действующие причины, препятствующие возрастанию энтропии… Всюду в сверкающем разнообразием мире идут не предусмотренные механикой процессы, препятствующие его смерти. Эти процессы должны быть подобны биологическим процессам, поддерживающим жизнь организмов. Поэтому их можно назвать процессами Жизни» [3]. Козырев оказался прав!
Во второй половине XX века ученые пришли к выводу, что эволюция Вселенной, которая представляет собой множество открытых и сложных систем, не приводит к снижению уровня упорядоченности и обеднению разнообразия форм материи. Наоборот, Вселенная развивается от простого к сложному, от низших форм организации к высшим, от менее организованного к более организованному.
Во Вселенной доминируют не стабильность и равновесие, а неустойчивость и неравновесность. Благодаря этому Вселенная оказывается способной к развитию, эволюции, к самоорганизации. Иначе говоря, старея, Вселенная обретает все более сложную организацию.
Чем принципиально отличается сложная система от простой? Ответ прост: энергией связи. Дело в том, что для объединения простых систем в сложные им требуется энергия связи, которая объединит все простые, теперь уже, подсистемы в единую сложную систему. Откуда берется эта энергия? Только из внешней среды.
Правда, возникает вопрос: каким образом из хаоса может возникнуть система? Ответ был найден: система самоорганизовалась! Просто взяла и организовалась сама. Оказывается, источником порядка может быть неравновесность – поток вещества или энергии.
Среди сложных систем самоорганизующиеся системы вызывают особый интерес. К такого рода сложным открытым самоорганизующимся системам относятся не только Вселенная, но и биологические и социальные системы, которые более всего значимы для человека. И сам человек! [4].
2
Больцман Людвиг (20 февраля 1844 – 5 сентября 1906) – австрийский физик-теоретик, основатель статистической механики и молекулярно-кинетической теории.
3
Энтропия есть мера неупорядоченности системы: если энтропия растет, то это означает, что система стремится перейти в состояние менее упорядоченное.
4
Диссипация энергии (от лат. dissipatio – рассеяние) – переход части энергии упорядоченных процессов (кинетической энергии движущегося тела, энергии электрического тока и т. п.) в энергию неупорядоченных процессов, в конечном счете – в теплоту (Википедия).