Читать книгу Scattering and Diffraction by Wedges 1 - Vito G. Daniele - Страница 2

Оглавление

Table of Contents

Cover

Title Page

Copyright Page

Preface

Introduction

1 Introduction to the Wiener-Hopf Method 1.1 A brief history of the Wiener-Hopf method 1.2 Fundamental definitions and assumptions to develop the Wiener-Hopf technique in the spectral domain 1.3 WH equations from the physical domain to the spectral domain 1.4 WH equations in wave scattering problems 1.5 Classical solution of WH equations 1.6 The decomposition (Cauchy) equations 1.7 General formula for factorization of scalar kernels 1.8 Some explicit factorization of matrix kernels useful in wedge scattering 1.9 The Fredholm factorization technique: a general technique to solve WH equations 1.10 Spectral properties of the unknowns 1.11 Semi-analytical solution of the Fredholm integral equation 1.12 Analytic continuation outside the integration line in the η -plane 1.13 The complex plane w 1.14 The WH unknowns in the w plane 1.15 The Fredholm factorization technique in the w plane 1.16 Analytic continuation in the w plane 1.17 The Fredholm factorization technique to factorize the kernel 1.18 Some examples of the Fredholm factorization method Appendix 1.A: effect of using j and i as imaginary units in Fourier transforms Appendix 1.B: compactness of the matrix kernel

2 A Basic Example: Scattering by a Half-plane 2.1. The fundamental problem of diffraction in wave motion 2.2. Unified theory of transverse equations in arbitrary stratified regions 2.3. WH equation for electromagnetic diffraction by a perfectly electrically conducting (PEC) half-plane illuminated by an Ez-polarized plane wave at normal incidence 2.4. Non-standard contributions of WH unknowns in the PEC half-plane illuminated by an Ez-polarized plane wave at normal incidence 2.5. Solution of the WH equation of the PEC half-plane using classical closed-form factorization 2.6. Solution of the WH equation of the PEC half-plane using the Fredholm factorization method 2.7. Field estimation 2.8. Numerical validation of the Fredholm factorization method 2.9. Generality of the wave motion in a homogeneous isotropic elastic solid 2.10. Plane waves in a homogeneous elastic solid and simplifications 2.11. Diffraction by a half-infinite crack in a homogeneous elastic solid planar problem 2.12. Diffraction by a half-infinite crack in a homogeneous isotropic two-dimensional elastic solid problem

3 The Wiener-Hopf Theory for Angular Region Problems 3.1. A brief history of the classical methods for studying angular regions 3.2. Introduction to the generalized Wiener-Hopf technique 3.3. WH functional equations in the angular region filled by a homogeneous isotropic medium in Electromagnetics 3.4. Reduction of the generalized functional equations of an angular region to functional equations defined in the same complex plane 3.5. Generalized Wiener-Hopf equations for the impenetrable wedge scattering problem 3.6. Solution of generalized Wiener-Hopf equations for the impenetrable wedge scattering problem 3.7. Non-standard parts of the plus and minus functions in GWHEs for the impenetrable wedge scattering problem 3.8. Closed-form solution of the PEC wedge scattering problem at normal incidence 3.9. Alternative solution of the PEC wedge scattering problem at normal incidence via difference equations 3.10. Generalized WH functional equations for angular regions in the w plane 3.11. Rotating wave method 3.12. Properties of rotating waves 3.13. Spectral field component in w for an arbitrary direction ϕ using rotating waves 3.14. Rotating waves in areas different from electromagnetism 3.15. Closed-form solution of the diffraction of an elastic SH wave by wedge with classical factorization 3.16. Rotating waves with the MF transform for wedge problems 3.17. Alternative solution of PEC wedge scattering problems via difference equations and the MF transform in terms of rotating waves Appendix 3.A: the Malyuzhinets–Fourier (MF) transform

References

10  Index

11  Summary of Volume 2

12  Other titles from ISTE in Waves

13  End User License Agreement

List of Illustrations

1 Chapter 1Figure 1.6.1 The “smile” and “frown” integration lines of the η' -plane Figure 1.13.1 Proper sheet of the η-plane with four quadrants 1, 2, 3 and 4 deli...Figure 1.13.2 Image of the proper and improper sheets of the η-plane onto the w ...Figure 1.15.1 Contour deformation of the integration line from the real axis of ...Figure 1.15.2 Integration path λ in the w plane. For a color version of the figu...Figure 1.18.1 Top left: the absolute value of F+(η) obtained with the Mittag–Lef...Figure 1.18.2 Top: the absolute value of the component (i,j) of the plus factori...Figure 1.18.3 Left: the absolute value of the component s (s=1 gray symbols, s=2...

2 Chapter 2Figure 2.2.1 Left: slab filled by an arbitrary linear medium. Right: network...Figure 2.3.1 The perfectly electrically conducting (PEC) half-plane problem ...Figure 2.7.1 Equivalence theorem using a perfectly electrically conducting s...Figure 2.7.2 Plane η: branch points ±k, vertical branch lines, curves with...Figure 2.7.3 Left: η-plane with the SDP for the set of φ = {πFigure 2.8.1 The half-plane scattering problem with Eo=1 V/m, φFigure 2.8.2 The half-plane scattering problem with Eo=1 V/m, φoFigure 2.8.3 Half-plane scattering problem with Eo=1 V/m, φo = 0...Figure 2.8.4 Half-plane scattering problem with Eo=1 V/m, φo = 0...Figure 2.9.1 Left: slab filled by an arbitrary linear medium in elasticity. ...Figure 2.9.2 Left: multilayer slab in elasticity terminated by semi-infinite...Figure 2.10.1 Left: plane wave reflection between semi-infinite homogeneous ...Figure 2.11.1 Left: half-infinite crack in a homogeneous elastic solid plana...

3 Chapter 3Figure 3.3.1 Angular region 0 ≤ Φ ≤ γ1 ≤ Π with three coordina...Figure 3.3.2 Space divided into four angular regions delimited by ϕ =...Figure 3.4.1 Proper sheet of the -plane with four quadrants 1, 2, 3 and 4 d...Figure 3.4.2 Images of the proper and improper sheets of the -plane in the...Figure 3.5.1 Scattering of an impenetrable wedge by a plane wave at skew inc...Figure 3.11.1 Angular region 0 ≤ ρ < ∞, ϕ1 ≤ ϕ ≤ ϕ...Figure 3.12.1 Regularity regions of respectively in .Figure 3.12.2 Images of the proper and improper sheets of the η-plane in the...Figure 3.13.1 Angular region 0 ≤ ρ < ∞, ϕ1 ≤ ϕ ≤ ϕ...Figure 3.15.1 Elastic solid wedge illuminated by an SH wave. For a color ver...Figure 3.17.1 Left: PEC wedge illuminated by a plane wave at Ez polarization...Figure 3.A.1 Graphical representation of natural and complex spectral planes...

Guide

Cover

2 Table of Contents

Begin Reading

Pages

ii

iii

iv

ix

x

xi

xii

1

2

10  3

11  4

12  5

13  6

14  7

15  8

16  9

17  10

18  11

19  12

20  13

21  14

22  15

23  16

24  17

25  18

26  19

27  20

28  21

29  22

30  23

31  24

32  25

33  26

34  27

35  28

36  29

37  30

38  31

39  32

40  33

41  34

42  35

43  36

44  37

45  38

46  39

47  40

48  41

49  42

50  43

51  44

52  45

53  46

54  47

55  48

56  49

57  50

58  51

59  52

60  53

61  54

62  55

63  56

64  57

65 58

66  59

67  60

68  61

69  62

70  63

71  64

72  65

73  66

74  67

75  68

76  69

77  70

78  71

79  72

80  73

81  74

82  75

83  76

84  77

85  78

86  79

87  80

88  81

89  82

90  83

91  84

92  85

93  86

94  87

95  88

96  89

97  90

98  91

99  92

100  93

101  94

102  95

103  96

104  97

105  98

106  99

107  100

108  101

109  102

110  103

111  104

112  105

113  106

114  107

115  108

116  109

117  110

118  111

119  112

120  113

121  114

122  115

123  116

124  117

125  118

126  119

127  120

128  121

129  122

130  123

131  124

132  125

133  126

134  127

135  128

136  129

137  130

138  131

139  132

140  133

141  134

142  135

143  136

144  137

145  138

146  139

147  140

148  141

149  142

150  143

151  144

152  145

153  146

154  147

155  148

156  149

157  150

158  151

159  152

160  153

161  154

162  155

163  156

164  157

165  158

166  159

167  160

168  161

169  162

170  163

171  164

172  165

173  166

174  167

175  168

176  169

177  170

178  171

179  172

180  173

181  174

182  175

183  176

184  177

185  178

186  179

187  180

188  181

189  182

190  183

191  184

192  185

193  186

194  187

195  188

196  189

197  190

198  191

199  192

200  193

201 194

202 195

203 196

204  197

205 198

206 199

207 200

208  201

Scattering and Diffraction by Wedges 1

Подняться наверх