Читать книгу Scattering and Diffraction by Wedges 1 - Vito G. Daniele - Страница 2
ОглавлениеTable of Contents
1 Cover
4 Preface
6 1 Introduction to the Wiener-Hopf Method 1.1 A brief history of the Wiener-Hopf method 1.2 Fundamental definitions and assumptions to develop the Wiener-Hopf technique in the spectral domain 1.3 WH equations from the physical domain to the spectral domain 1.4 WH equations in wave scattering problems 1.5 Classical solution of WH equations 1.6 The decomposition (Cauchy) equations 1.7 General formula for factorization of scalar kernels 1.8 Some explicit factorization of matrix kernels useful in wedge scattering 1.9 The Fredholm factorization technique: a general technique to solve WH equations 1.10 Spectral properties of the unknowns 1.11 Semi-analytical solution of the Fredholm integral equation 1.12 Analytic continuation outside the integration line in the η -plane 1.13 The complex plane w 1.14 The WH unknowns in the w plane 1.15 The Fredholm factorization technique in the w plane 1.16 Analytic continuation in the w plane 1.17 The Fredholm factorization technique to factorize the kernel 1.18 Some examples of the Fredholm factorization method Appendix 1.A: effect of using j and i as imaginary units in Fourier transforms Appendix 1.B: compactness of the matrix kernel
7 2 A Basic Example: Scattering by a Half-plane 2.1. The fundamental problem of diffraction in wave motion 2.2. Unified theory of transverse equations in arbitrary stratified regions 2.3. WH equation for electromagnetic diffraction by a perfectly electrically conducting (PEC) half-plane illuminated by an Ez-polarized plane wave at normal incidence 2.4. Non-standard contributions of WH unknowns in the PEC half-plane illuminated by an Ez-polarized plane wave at normal incidence 2.5. Solution of the WH equation of the PEC half-plane using classical closed-form factorization 2.6. Solution of the WH equation of the PEC half-plane using the Fredholm factorization method 2.7. Field estimation 2.8. Numerical validation of the Fredholm factorization method 2.9. Generality of the wave motion in a homogeneous isotropic elastic solid 2.10. Plane waves in a homogeneous elastic solid and simplifications 2.11. Diffraction by a half-infinite crack in a homogeneous elastic solid planar problem 2.12. Diffraction by a half-infinite crack in a homogeneous isotropic two-dimensional elastic solid problem
8 3 The Wiener-Hopf Theory for Angular Region Problems 3.1. A brief history of the classical methods for studying angular regions 3.2. Introduction to the generalized Wiener-Hopf technique 3.3. WH functional equations in the angular region filled by a homogeneous isotropic medium in Electromagnetics 3.4. Reduction of the generalized functional equations of an angular region to functional equations defined in the same complex plane 3.5. Generalized Wiener-Hopf equations for the impenetrable wedge scattering problem 3.6. Solution of generalized Wiener-Hopf equations for the impenetrable wedge scattering problem 3.7. Non-standard parts of the plus and minus functions in GWHEs for the impenetrable wedge scattering problem 3.8. Closed-form solution of the PEC wedge scattering problem at normal incidence 3.9. Alternative solution of the PEC wedge scattering problem at normal incidence via difference equations 3.10. Generalized WH functional equations for angular regions in the w plane 3.11. Rotating wave method 3.12. Properties of rotating waves 3.13. Spectral field component in w for an arbitrary direction ϕ using rotating waves 3.14. Rotating waves in areas different from electromagnetism 3.15. Closed-form solution of the diffraction of an elastic SH wave by wedge with classical factorization 3.16. Rotating waves with the MF transform for wedge problems 3.17. Alternative solution of PEC wedge scattering problems via difference equations and the MF transform in terms of rotating waves Appendix 3.A: the Malyuzhinets–Fourier (MF) transform
10 Index
List of Illustrations
1 Chapter 1Figure 1.6.1 The “smile” and “frown” integration lines of the η' -plane Figure 1.13.1 Proper sheet of the η-plane with four quadrants 1, 2, 3 and 4 deli...Figure 1.13.2 Image of the proper and improper sheets of the η-plane onto the w ...Figure 1.15.1 Contour deformation of the integration line from the real axis of ...Figure 1.15.2 Integration path λ in the w plane. For a color version of the figu...Figure 1.18.1 Top left: the absolute value of F+(η) obtained with the Mittag–Lef...Figure 1.18.2 Top: the absolute value of the component (i,j) of the plus factori...Figure 1.18.3 Left: the absolute value of the component s (s=1 gray symbols, s=2...
2 Chapter 2Figure 2.2.1 Left: slab filled by an arbitrary linear medium. Right: network...Figure 2.3.1 The perfectly electrically conducting (PEC) half-plane problem ...Figure 2.7.1 Equivalence theorem using a perfectly electrically conducting s...Figure 2.7.2 Plane η: branch points ±k, vertical branch lines, curves with...Figure 2.7.3 Left: η-plane with the SDP for the set of φ = {πFigure 2.8.1 The half-plane scattering problem with Eo=1 V/m, φFigure 2.8.2 The half-plane scattering problem with Eo=1 V/m, φoFigure 2.8.3 Half-plane scattering problem with Eo=1 V/m, φo = 0...Figure 2.8.4 Half-plane scattering problem with Eo=1 V/m, φo = 0...Figure 2.9.1 Left: slab filled by an arbitrary linear medium in elasticity. ...Figure 2.9.2 Left: multilayer slab in elasticity terminated by semi-infinite...Figure 2.10.1 Left: plane wave reflection between semi-infinite homogeneous ...Figure 2.11.1 Left: half-infinite crack in a homogeneous elastic solid plana...
3 Chapter 3Figure 3.3.1 Angular region 0 ≤ Φ ≤ γ1 ≤ Π with three coordina...Figure 3.3.2 Space divided into four angular regions delimited by ϕ =...Figure 3.4.1 Proper sheet of the -plane with four quadrants 1, 2, 3 and 4 d...Figure 3.4.2 Images of the proper and improper sheets of the -plane in the...Figure 3.5.1 Scattering of an impenetrable wedge by a plane wave at skew inc...Figure 3.11.1 Angular region 0 ≤ ρ < ∞, ϕ1 ≤ ϕ ≤ ϕ...Figure 3.12.1 Regularity regions of respectively in .Figure 3.12.2 Images of the proper and improper sheets of the η-plane in the...Figure 3.13.1 Angular region 0 ≤ ρ < ∞, ϕ1 ≤ ϕ ≤ ϕ...Figure 3.15.1 Elastic solid wedge illuminated by an SH wave. For a color ver...Figure 3.17.1 Left: PEC wedge illuminated by a plane wave at Ez polarization...Figure 3.A.1 Graphical representation of natural and complex spectral planes...
Pages
1 ii
2 iii
3 iv
4 ix
5 x
6 xi
7 xii
8 1
9 2
10 3
11 4
12 5
13 6
14 7
15 8
16 9
17 10
18 11
19 12
20 13
21 14
22 15
23 16
24 17
25 18
26 19
27 20
28 21
29 22
30 23
31 24
32 25
33 26
34 27
35 28
36 29
37 30
38 31
39 32
40 33
41 34
42 35
43 36
44 37
45 38
46 39
47 40
48 41
49 42
50 43
51 44
52 45
53 46
54 47
55 48
56 49
57 50
58 51
59 52
60 53
61 54
62 55
63 56
64 57
65 58
66 59
67 60
68 61
69 62
70 63
71 64
72 65
73 66
74 67
75 68
76 69
77 70
78 71
79 72
80 73
81 74
82 75
83 76
84 77
85 78
86 79
87 80
88 81
89 82
90 83
91 84
92 85
93 86
94 87
95 88
96 89
97 90
98 91
99 92
100 93
101 94
102 95
103 96
104 97
105 98
106 99
107 100
108 101
109 102
110 103
111 104
112 105
113 106
114 107
115 108
116 109
117 110
118 111
119 112
120 113
121 114
122 115
123 116
124 117
125 118
126 119
127 120
128 121
129 122
130 123
131 124
132 125
133 126
134 127
135 128
136 129
137 130
138 131
139 132
140 133
141 134
142 135
143 136
144 137
145 138
146 139
147 140
148 141
149 142
150 143
151 144
152 145
153 146
154 147
155 148
156 149
157 150
158 151
159 152
160 153
161 154
162 155
163 156
164 157
165 158
166 159
167 160
168 161
169 162
170 163
171 164
172 165
173 166
174 167
175 168
176 169
177 170
178 171
179 172
180 173
181 174
182 175
183 176
184 177
185 178
186 179
187 180
188 181
189 182
190 183
191 184
192 185
193 186
194 187
195 188
196 189
197 190
198 191
199 192
200 193
201 194
202 195
203 196
204 197
205 198
206 199
207 200
208 201