Читать книгу Scattering and Diffraction by Wedges 2 - Vito G. Daniele - Страница 2
ОглавлениеTable of Contents
1 Cover
3 Copyright
4 Preface
6 4 Exact Solutions for Electromagnetic Impedance Wedges 4.1. Introduction 4.2. A list of the impedance wedge problems amenable to exact WH solutions 4.3. Cases involving classical WH equations 4.4. Exact solutions for impedance wedge problems with the GWHE form of section 3.5 – form #1 4.5. Exact solutions for the impedance wedge problems with the GWHEs written in an alternative form – form #2 4.6. A general form of the GWHEs to study the arbitrary face impedance wedges – form #3 Appendix 4.A. Some important formulas of decomposition for wedge problems
7 5 Fredholm Factorization Solutions of GWHEs for the Electromagnetic Impedance Wedges Surrounded by an Isotropic Medium 5.1. Introduction 5.2. Generalized Wiener-Hopf equations for the impenetrable wedge scattering problem of an electromagnetic plane wave at skew incidence 5.3. Fredholm factorization solution in the η plane of GWHEs 5.4. Fredholm factorization solution in the w plane of GWHEs 5.5. Approximate solution of FIEs derived from GWHEs 5.6. Analytic continuation of approximate solutions of GWHEs 5.7. Far-field computation 5.8. Criteria for the examples 5.9. Example 1: Symmetric isotropic impedance wedge at normal incidence with Ez polarization 5.10. Example 2: Non-symmetric isotropic impedance wedge at normal incidence with Hz polarization and surface wave contribution 5.11. Example 3: PEC wedge at skew incidence 5.12. Example 4: Arbitrary impedance half-plane at skew incidence 5.13. Example 5: Arbitrary impedance wedge at skew incidence 5.14. Example 6: Arbitrary impedance concave wedge at skew incidence 5.15. Discussion Appendix 5.A. Fredholm properties of the integral equation (5.3.1)
8 6 Diffraction by Penetrable Wedges 6.1. Introduction 6.2. GWHEs for the dielectric wedge at normal incidence (Ez-polarization) 6.3. Reduction of the GWHEs for the dielectric wedge at Ez-polarization to Fredholm integral equations 6.4. Analytic continuation for the solution of the dielectric wedge at Ez-polarization 6.5. Some remarks on the Fredholm integral equations (6.3.24), (6.3.26) and numerical solutions 6.6. Field evaluation in any point of the space 6.7. The dielectric wedge at skew incidence 6.8. Criteria for examples of the scattering by a dielectric wedge at normal incidence (Ez-polarization) 6.9. Example: the scattering by a dielectric wedge at normal incidence (Ez-polarization) 6.10. Discussion Appendix 6.A. Fredholm factorization applied to (6.3.2)–(6.3.5) Appendix 6.B. Source term η
10 Index
List of Illustrations
1 Chapter 4Figure 4.1.1. Scattering by an impendence wedgeFigure 4.1.2. Particular cases of impedance wedges. Left: half-plane (γa = γb = ...Figure 4.3.1. Particular cases of impedance wedges. Left: half-plane (γa = γb =π...Figure 4.3.3.1. Full-plane junction with different face impendencesFigure 4.3.5.1. An example of a right-angled wedge that can be solved exactly at...Figure 4.4.1. Impenetrable wedge with arbitrary aperture and face impendences at...
2 Chapter 5Figure 5.2.1. Scattering of an impenetrable wedge by a plane wave at skew incide...Figure 5.4.1. Left: contour deformation of integration line from the real axis o...Figure 5.7.1. Horizontal (Im[η] = cost) Bromwich contours Br and SDP contour in ...Figure 5.9.1. Top-left (bottom-left): absolute value of ĝ1+ (w) (ĝ2+ (w)) for –Φ...Figure 5.9.2. Top-left (bottom-left): absolute value of obtained with strate...Figure 5.9.3. Plot of the relative error in log10 scale of the results in terms ...Figure 5.9.4. Top (bottom): imaginary part of the initial spectrum obtained w...Figure 5.9.5. Top: total field (solid line), GO field component (circles) and UT...Figure 5.10.1. Top: total field (solid line), GO field component (circles), UTD ...Figure 5.11.1. Top: the exact GTD diffraction coefficient dB. Bottom: relative e...Figure 5.12.1. GTD co-polar diffraction coefficient in dB versus the azimuthal o...Figure 5.12.2.The relative error on the evaluation of GTD diffraction coefficien...Figure 5.13.1. Co-polar component Ez of total far field at kρ = 10 for the test ...Figure 5.13.2. Cross-polar component ΖoHz of total far field at kρ = 10 for the ...Figure 5.14.1. Impendence concave wedge with multiple reflections. For a color v...Figure 5.14.2. Co-polar Hz (left) and cross-polar Ez/Zo (right) far-field compon...Figure 5.14.3. Co-polar (Ez) and cross-polar (Zo Hz) GTD diffraction coefficient...
3 Chapter 6Figure 6.1.1. Dielectric wedge problem: 2π – 2Φ is the aperture angle of the wed...Figure 6.9.1. GO field, UTD component and the total far-field pattern at kρ = 10...Figure 6.9.2. a, b) Imaginary parts in the regularity segment –Φ ≤ w ≤ 0 that ...Figure 6.9.3. a, b) Imaginary parts in the regularity segment –Φ1 ≤ w1 ≤ 0 tha...Figure 6.9.4. a, d) Absolute value of the spectral unknowns and in (–2π,0) a...Figure 6.9.5. a) Absolute value of the total GTD diffraction coefficient (dB), b...Figure 6.9.6. Left: total field (solid line), GO field component (squares), UTD ...Figure 6.9.7. w = Φ + g1(w1 + Φ1) mapping used for the analytical continuation o...
Pages
1 v
2 ii
3 iii
4 iv
5 ix
6 x
7 xi
8 xiii
9 xiv
10 xv
11 1
12 2
13 3
14 4
15 5
16 6
17 7
18 8
19 9
20 10
21 11
22 12
23 13
24 14
25 15
26 16
27 17
28 18
29 19
30 20
31 21
32 22
33 23
34 24
35 25
36 26
37 27
38 28
39 29
40 30
41 31
42 32
43 33
44 34
45 35
46 36
47 37
48 38
49 39
50 40
51 41
52 42
53 43
54 44
55 45
56 46
57 47
58 48
59 49
60 50
61 51
62 52
63 53
64 54
65 55
66 56
67 57
68 58
69 59
70 60
71 61
72 62
73 63
74 64
75 65
76 66
77 67
78 68
79 69
80 70
81 71
82 72
83 73
84 74
85 75
86 76
87 77
88 78
89 79
90 80
91 81
92 82
93 83
94 84
95 85
96 86
97 87
98 88
99 89
100 90
101 91
102 92
103 93
104 94
105 95
106 96
107 97
108 98
109 99
110 100
111 101
112 102
113 103
114 104
115 105
116 106
117 107
118 108
119 109
120 110
121 111
122 112
123 113
124 114
125 115
126 116
127 117
128 118
129 119
130 120
131 121
132 122
133 123
134 124
135 125
136 126
137 127
138 128
139 129
140 130
141 131
142 132
143 133
144 135
145 136
146 137
147 138
148 139
149 140
150 141
151 142
152 143
153 144
154 145
155 146
156 147
157 148
158 149
159 150
160 151
161 152
162 153
163 154
164 155
165 156
166 157
167 158
168 159
169 160
170 161
171 162
172 163
173 164
174 165
175 166
176 167
177 168
178 169
179 170
180 171
181 172
182 173
183 174
184 175
185 176
186 177
187 178
188 179
189 180
190 181
191 182
192 183
193 184
194 185
195 186
196 187
197 188
198 189
199 190
200 191
201 192
202 193
203 194
204 195
205 196
206 197
207 198
208 199
209 200
210 201
211 202
212 203
213 205
214 206
215 207
216 209
217 210
218 211
219 213
220 214
221 215
222 216
223 217
224 218
225 219