Читать книгу Scattering and Diffraction by Wedges 2 - Vito G. Daniele - Страница 2

Оглавление

Table of Contents

Cover

Title page

3 Copyright

Preface

Introduction

4 Exact Solutions for Electromagnetic Impedance Wedges 4.1. Introduction 4.2. A list of the impedance wedge problems amenable to exact WH solutions 4.3. Cases involving classical WH equations 4.4. Exact solutions for impedance wedge problems with the GWHE form of section 3.5 – form #1 4.5. Exact solutions for the impedance wedge problems with the GWHEs written in an alternative form – form #2 4.6. A general form of the GWHEs to study the arbitrary face impedance wedges – form #3 Appendix 4.A. Some important formulas of decomposition for wedge problems

5 Fredholm Factorization Solutions of GWHEs for the Electromagnetic Impedance Wedges Surrounded by an Isotropic Medium 5.1. Introduction 5.2. Generalized Wiener-Hopf equations for the impenetrable wedge scattering problem of an electromagnetic plane wave at skew incidence 5.3. Fredholm factorization solution in the η plane of GWHEs 5.4. Fredholm factorization solution in the w plane of GWHEs 5.5. Approximate solution of FIEs derived from GWHEs 5.6. Analytic continuation of approximate solutions of GWHEs 5.7. Far-field computation 5.8. Criteria for the examples 5.9. Example 1: Symmetric isotropic impedance wedge at normal incidence with Ez polarization 5.10. Example 2: Non-symmetric isotropic impedance wedge at normal incidence with Hz polarization and surface wave contribution 5.11. Example 3: PEC wedge at skew incidence 5.12. Example 4: Arbitrary impedance half-plane at skew incidence 5.13. Example 5: Arbitrary impedance wedge at skew incidence 5.14. Example 6: Arbitrary impedance concave wedge at skew incidence 5.15. Discussion Appendix 5.A. Fredholm properties of the integral equation (5.3.1)

6 Diffraction by Penetrable Wedges 6.1. Introduction 6.2. GWHEs for the dielectric wedge at normal incidence (Ez-polarization) 6.3. Reduction of the GWHEs for the dielectric wedge at Ez-polarization to Fredholm integral equations 6.4. Analytic continuation for the solution of the dielectric wedge at Ez-polarization 6.5. Some remarks on the Fredholm integral equations (6.3.24), (6.3.26) and numerical solutions 6.6. Field evaluation in any point of the space 6.7. The dielectric wedge at skew incidence 6.8. Criteria for examples of the scattering by a dielectric wedge at normal incidence (Ez-polarization) 6.9. Example: the scattering by a dielectric wedge at normal incidence (Ez-polarization) 6.10. Discussion Appendix 6.A. Fredholm factorization applied to (6.3.2)–(6.3.5) Appendix 6.B. Source term η

References

10  Index

11  Summary of Volume 1

12  End User License Agreement

List of Illustrations

1 Chapter 4Figure 4.1.1. Scattering by an impendence wedgeFigure 4.1.2. Particular cases of impedance wedges. Left: half-plane (γa = γb = ...Figure 4.3.1. Particular cases of impedance wedges. Left: half-plane (γa = γb =π...Figure 4.3.3.1. Full-plane junction with different face impendencesFigure 4.3.5.1. An example of a right-angled wedge that can be solved exactly at...Figure 4.4.1. Impenetrable wedge with arbitrary aperture and face impendences at...

2 Chapter 5Figure 5.2.1. Scattering of an impenetrable wedge by a plane wave at skew incide...Figure 5.4.1. Left: contour deformation of integration line from the real axis o...Figure 5.7.1. Horizontal (Im[η] = cost) Bromwich contours Br and SDP contour in ...Figure 5.9.1. Top-left (bottom-left): absolute value of ĝ1+ (w) (ĝ2+ (w)) for –Φ...Figure 5.9.2. Top-left (bottom-left): absolute value of obtained with strate...Figure 5.9.3. Plot of the relative error in log10 scale of the results in terms ...Figure 5.9.4. Top (bottom): imaginary part of the initial spectrum obtained w...Figure 5.9.5. Top: total field (solid line), GO field component (circles) and UT...Figure 5.10.1. Top: total field (solid line), GO field component (circles), UTD ...Figure 5.11.1. Top: the exact GTD diffraction coefficient dB. Bottom: relative e...Figure 5.12.1. GTD co-polar diffraction coefficient in dB versus the azimuthal o...Figure 5.12.2.The relative error on the evaluation of GTD diffraction coefficien...Figure 5.13.1. Co-polar component Ez of total far field at kρ = 10 for the test ...Figure 5.13.2. Cross-polar component ΖoHz of total far field at kρ = 10 for the ...Figure 5.14.1. Impendence concave wedge with multiple reflections. For a color v...Figure 5.14.2. Co-polar Hz (left) and cross-polar Ez/Zo (right) far-field compon...Figure 5.14.3. Co-polar (Ez) and cross-polar (Zo Hz) GTD diffraction coefficient...

3 Chapter 6Figure 6.1.1. Dielectric wedge problem: 2π – 2Φ is the aperture angle of the wed...Figure 6.9.1. GO field, UTD component and the total far-field pattern at kρ = 10...Figure 6.9.2. a, b) Imaginary parts in the regularity segment –Φ ≤ w ≤ 0 that ...Figure 6.9.3. a, b) Imaginary parts in the regularity segment –Φ1 ≤ w1 ≤ 0 tha...Figure 6.9.4. a, d) Absolute value of the spectral unknowns and in (–2π,0) a...Figure 6.9.5. a) Absolute value of the total GTD diffraction coefficient (dB), b...Figure 6.9.6. Left: total field (solid line), GO field component (squares), UTD ...Figure 6.9.7. w = Φ + g1(w1 + Φ1) mapping used for the analytical continuation o...

Guide

Cover

Table of Contents

Title Page

Copyright

Preface

Introduction

Begin Reading

References

Index

10  Summary of Volume 1

11  End User License Agreement

Pages

v

ii

iii

iv

ix

x

xi

xiii

xiv

10  xv

11  1

12  2

13  3

14  4

15  5

16  6

17  7

18  8

19  9

20 10

21  11

22  12

23  13

24  14

25  15

26  16

27  17

28  18

29  19

30  20

31  21

32  22

33  23

34  24

35  25

36  26

37  27

38  28

39  29

40  30

41  31

42  32

43  33

44  34

45  35

46  36

47  37

48  38

49  39

50  40

51  41

52  42

53  43

54  44

55  45

56  46

57  47

58  48

59  49

60  50

61  51

62  52

63  53

64  54

65  55

66  56

67  57

68  58

69  59

70  60

71  61

72  62

73  63

74  64

75  65

76  66

77  67

78  68

79  69

80  70

81  71

82  72

83  73

84  74

85  75

86  76

87  77

88  78

89  79

90  80

91  81

92  82

93  83

94  84

95  85

96  86

97  87

98  88

99  89

100  90

101  91

102  92

103  93

104  94

105  95

106  96

107  97

108  98

109  99

110  100

111  101

112  102

113  103

114  104

115  105

116  106

117  107

118  108

119  109

120  110

121  111

122  112

123  113

124  114

125  115

126  116

127  117

128  118

129  119

130  120

131  121

132  122

133  123

134  124

135  125

136  126

137  127

138  128

139  129

140  130

141  131

142  132

143  133

144  135

145  136

146  137

147  138

148  139

149  140

150  141

151  142

152  143

153  144

154  145

155  146

156  147

157  148

158  149

159  150

160  151

161  152

162  153

163  154

164  155

165  156

166  157

167  158

168  159

169  160

170  161

171  162

172  163

173  164

174  165

175  166

176  167

177  168

178  169

179  170

180  171

181  172

182  173

183  174

184  175

185  176

186  177

187  178

188  179

189  180

190  181

191  182

192  183

193  184

194  185

195  186

196  187

197  188

198  189

199  190

200  191

201  192

202  193

203  194

204  195

205  196

206  197

207  198

208  199

209 200

210 201

211 202

212 203

213  205

214 206

215 207

216  209

217  210

218 211

219  213

220  214

221  215

222  216

223  217

224  218

225  219

Scattering and Diffraction by Wedges 2

Подняться наверх