Читать книгу Радиационная безопасность. От теории к практике - Владимир Игоревич Ушаков - Страница 6

1. ИОНИЗИРУЮЩИЕ ИЗЛУЧЕНИЯ И ИХ СВОЙСТВА
1.1. Физическая природа ионизирующих излучений
1.1.3. Изотопы. Радиоактивность и ее закономерности

Оглавление

Существует много атомов, ядра которых содержат равное число протонов, но разное число нейтронов. Массовые числа у этих атомов различны, но их химические свойства одинаковы, так как они имеют один и тот же заряд ядра и, следовательно, занимают одно и то же место в таблице Менделеева. Такие атомы получили название изотопов. Изотоп – нуклид с числом протонов в ядре, свойственным данному элементу.

Изотопный состав имеют многие химические элементы, некоторые из них имеют относительно большое количество изотопов. Например, водород имеет три изотопа: 11H – протий (легчайший изотоп водорода), 12D – дейтерий, 13T – тритий; известны: 19 изотопов йода, восемь изотопов железа, шесть изотопов урана и т. д.

Изотопы одного элемента химическими методами не могут быть разделены. Записываются изотопы элементов одинаковыми символами, отличающимися один от другого лишь массовым числом, например: изотоп углерода – от 106C до 146C; изотоп алюминия – от 2613Al до 2913Al; изотоп урана – от 23392U до 23992U и т. д.

Известно около 1500 изотопов. Одни из них устойчивые – стабильные, другие неустойчивые – радиоактивные. Стабильные изотопы – изотопы, ядра которых в течение длительного промежутка времени не претерпевают изменения. Изотопы, ядра которых со временем распадаются, называют радиоактивными или радионуклидами (РН). Радионуклид – нуклид, обладающий радиоактивностью. Радиоизотоп – изотоп, обладающий радиоактивностью.

В конце XIX в. А. Беккерелем, Пьером и Марией Кюри и другими учеными было открыто явление самопроизвольного распада ядер некоторых неустойчивых химических элементов. Исследователи установили, что распадающиеся ядра претерпевают превращения с образованием новых изотопов элемента и даже новых элементов, при этом выделяется энергия в виде радиоактивных излучений.

Радиоактивность – самопроизвольное превращение неустойчивого нуклида в другой нуклид, сопровождающееся испусканием ионизирующего излучения. Явление самопроизвольного распада ядер называется естественной радиоактивностью, а неустойчивые изотопы, претерпевающие самопроизвольные превращения, радиоактивными. Специально приготовленные радиоактивные изотопы называют искусственно радиоактивными.

Явление радиоактивности обладает рядом особенностей:

радиоактивность – свойство ядер радиоактивных элементов;

радиоактивность – самопроизвольный процесс;

на явление радиоактивности не влияют такие внешние факторы, как давление, температура, магнитные и электрические поля, химические реагенты;

в процессе радиоактивного распада выполняется закон сохранения энергии, согласно которому энергия материнского ядра равна энергии продуктов распада, закон сохранения электрического заряда и закон сохранения массы. Это означает, что суммарная энергия, масса и заряд до начала превращения и после его завершения должны оставаться постоянными.

Устойчивость атомных ядер обусловлена соотношением внутриядерных сил, воздействующих на нуклоны ядра. Такими силами являются:

ядерные силы взаимного притяжения нуклонов; эти силы проявляют себя на очень малых радиусах действия (не более 10—13см) и стремятся удержать ядро в целостности;

кулоновские силы взаимного отталкивания протонов, стремящиеся разрушить ядро.

Нормальный (невозбужденный) атом всякого элемента электрически нейтрален и все внутриатомные силы его находятся в равновесии.

Атомные ядра элементов с атомным номером 83 и более (число протонов Zх83, отношение числа нейтронов к числу протонов A—Z/Zх1,52) являются в той или иной мере неустойчивыми. К наименее устойчивым относятся ядра тяжелых элементов. На рис. 1.2 представлена графическая зависимость числа нейтронов в атомных ядрах элементов от заряда ядра.


Рис. 1.2. Зависимость N (Z)


По мере увеличения числа протонов в устойчивых атомных ядрах число нейтронов, приходящихся на один протон, возрастает от 1 до 1,6. Это обусловлено тем, что с увеличением числа протонов в ядре кулоновские силы отталкивания усиливаются и, преодолевая ядерные силы взаимного притяжения нуклонов, стремятся разъединить и удалить протоны из ядра.

Ядро с большим числом протонов может существовать только при наличии большого числа нейтронов, которые, снижая концентрацию протонов в ядре (см. рис. 1.2), уравновешивают внутриядерные силы ядра атома. В устойчивых ядрах должно быть определенное соотношение числа нейтронов к числу протонов, увеличивающееся с возрастанием атомных номеров химических элементов.

Отклонение от этого соотношения приводит к неустойчивости элементов, т.е. к их радиоактивному распаду.

Распад ядер радиоактивных элементов происходит до тех пор пока не будет установлено равновесие нуклонов в ядре и ядро не станет устойчивым. Цепь распадов с последовательным образованием ряда промежуточных изотопов, называемая радиоактивным семейством, заканчивается нераспадающимся (стабильным) изотопом какого-либо элемента. Так, например, одно из таких радиоактивных семейств начинается ураном и заканчивается стабильным изотопом свинца.

В науке и технике широко используются искусственные радиоактивные изотопы, которые изготовляются путем различных ядерных реакций и превращений.

Между естественной и искусственной радиоактивностями одинаковых изотопов нет разницы, так как свойства радиоактивного изотопа не зависят от способа его получения.

Основными видами радиоактивных превращений атомных ядер являются: альфа-распад; бетта- и бетта+-распад, электронный захват (К-захват); гамма-распад; нейтронный распад (n-распад); спонтанное деление ядер.

При альфа-распаде из ядра распадающегося элемента излучается альфа-частица, представляющая собой ядро атома гелия 42He (два протона и два нейтрона) и имеющая положительный заряд, равный по абсолютной величине двум зарядам электрона. В настоящее время известно около 40 естественных и более 200 искусственных альфа-активных ядер. Этот вид распада характерен для тяжелых элементов, обладающих меньшими значениями энергии связи, и нередко сопровождается гамма-излучением. Образовавшееся при альфа-распаде дочернее ядро будет иметь заряд и массу, меньшие, чем у распавшегося ядра, соответственно на две и четыре единицы. В общем виде реакция альфа-распада записывается так AZX – A-4Z-2Y +42He + Q, где Q – выделившаяся при распаде энергия, эВ.

Например, ядро плутония 23994Pu, излучив альфа-частицу, превращается в ядро урана 23592U. Общая схема этого альфа-распада приведена на рис. 1.3. Процесс альфа-распада принято представлять следующим образом. В результате взаимодействия ядерных и кулоновских сил в некоторый момент ядро отделяет альфа-частицу, которая вскоре оказывается под действием только отталкивающих кулоновских сил. Эти силы разгоняют альфа-частицу до скорости, достигающей на периферии атома 20000 км/с. Отдельная частица приобретает большую кинетическую энергию. Таким образом, выбрасыванием из ядра альфа-

Радиационная безопасность. От теории к практике

Подняться наверх