Читать книгу Основы цветоведения в практике спиннинга и нахлыста - Владимир Александрович Кожевников, Владимир Кожевников - Страница 2
Цвет в теории
Оглавление1. Как приманка выглядит в воде
Вид приманки в воде может значительно отличаться от того, что мы видим в воздухе. Главное отличие – в цвете, и обусловлено это отличие многими факторами.
Во-первых, это чисто физические явления, изменяющие спектр света в зависимости от его "пробега" в воде; с другой стороны, это свойства разных по составу красок, которые, вызывая у нас одинаковые цветовые ощущения, могут отражать разный набор спектральных составляющих. Поэтому одинаковые для нашего глаза по цвету приманки, попадая в воду, на разной глубине могут выглядеть по-разному.
Во-вторых, это биологические явления, которые модифицируют спектр света за счёт наличия в воде органических молекул и микроорганизмов. К тому же разные виды рыб, имея разную чувствительность к свету и к цвету, тоже по-разному воспринимают наши приманки. Что нужно иметь в виду, применяя окрашенные приманки, так это то, что их цвет совсем не такой, как в воздухе, и то, как его будет видеть рыба, зависит от глубины погружения приманки, расстояния приманки от глаза рыбы и от чувствительности глаза рыбы к свету и цвету. И вряд ли в каждом конкретном случае можно с уверенностью сказать, что на самом деле увидит рыба. Пессимистично? Увы, да. Тем не менее, зная суть явлений, можно с определенной вероятностью это прогнозировать.
1.1. Физика явления
1.1.1. Свет в воде
Освещенность водной среды зависит, главным образом, от глубины. Немаловажно и расположение солнца по отношению к водной поверхности (угол), наличия облачности и волнения. Например, в средних широтах наибольшая освещенность в воде возможна 22–23 июня в полдень непосредственно под поверхностью при ясном небе в штиль. Облачность и волнение значительно снижают освещенность. Время суток и сезон определяют угол падения лучей солнечного света на воду. Чем он меньше, тем более свет отражается от водной поверхности, особенно резко снижается освещенность водной среды при малых значениях этого угла.
Около 40–50% света теряется на полуметровой глубине и лишь 1% света достигает 10–12 метров. Много это или мало? Чтобы ответить на этот вопрос, достаточно посетить сайты дайверов и подводных охотников. Так вот, в прозрачной осеннее-зимней воде наших рек на глубине 6–8 метров освещенность вполне достаточна для визуального обнаружения рыбы человеком. А летом при прочих равных условиях освещённость у поверхности воды в 10 раз больше, чем зимой, значит летом освещённость ещё больше.
Таким образом, там, где мы обычно ловим рыбу, освещённость вполне достаточна для того, чтобы зрительно-ориентированные хищники (то есть использующие при охоте главным образом зрение) прекрасно видели наши приманки.
1.1.2. Спектр и цвет в воздухе и в воде
Белый лист бумаги, или любой другой белый предмет мы воспринимаем как результат отражения его поверхностью всех спектральных составляющих видимого света. Когда-то нас учили запомнить их последовательность в радуге как "каждый охотник желает знать, где сидят фазаны" (красный, оранжевый, жёлтый, зелёный, голубой, синий и фиолетовый). Эти цвета – основные, или спектральные. В учебниках живописи выделяют ещё и промежуточные цвета: малиновый, красно-оранжевый, жёлто-зелёный, голубовато-зелёный и др. Каждому промежуточному цвету тоже соответствует дополнительный цвет (сложение с которым не даёт окрашивания). У основных (спектральных) цветов парами дополнительных являются красный и зелёный, жёлтый и синий, оранжевый и голубой.
В таблице 1 представлен один из многих вариантов сопоставления длины волны с нашим ощущением и определением цвета. В таблицу добавлен столбец, содержащий названия дополнительных цветов. Любая пара основного и дополнительного цвета при смешении является бесцветной, и белый предмет, освещённый такой парой цветов, выглядит белым.
Дневной свет в результате смешения всех цветов с дополнительными бесцветен, а освещённый таким полихромным (многоцветным) светом белый предмет выглядит белым, поскольку отражает весь диапазон длин волн света. Если перед листом белой бумаги разложить освещающий свет с помощью призмы на спектральные составляющие (опыт Ньютона, школьный курс физики), экранировать одну из них и снова "сложить", мы увидим не белый, а окрашенный участок этого листа, освещённого "обеднённым" светом. Убирая синий, мы получим жёлтое окрашивание, убирая голубой – оранжевое, убирая красный, получим зелёное (рис. 1). Таким образом, изъятие из всего спектра всего одной спектральной составляющей приводит к его окрашиванию в дополнительный цвет. В данном случае все дополнительные цвета – парами, поэтому в сумме дают белый, а один из них – без пары, поэтому не "нейтрализуется" и окрашивает белый лист "в себя".
Чтобы получить один и тот же цвет, можно вычесть не только один дополнительный (см. выше), но и все цвета, кроме нужного. Например, экранируя жёлтый, мы получаем синее окрашивание, и точно такой же результат получается при экранировании всех цветов, кроме синего (рис. 2). Отличие в том, что в первом случае объект освещён спектрально богатым полихромным светом (только лишь без жёлтого), а во втором – бедным монохромным (только синим), поэтому при одинаковом тоне (цвете) в первом случае цветовое пятно гораздо ярче, чем во втором. Это важно для понимания цвета приманки в воде: полихромный свет гораздо ярче монохромного света одного с ним цвета.
Тот же принцип лежит в основе окрашивания белого предмета, который, попав в воду, в зависимости от глубины погружения, выглядит по-разному, окрашиваясь в цвета, дополнительные тем, которые на данной глубине не пропустила вода. В первую очередь, вследствие потери красного и фиолетового (как при экранировании красного и фиолетового), отражённый белой поверхностью свет приобретает жёлто-зелёное окрашивание. А на большой глубине, где кроме голубого никакие цвета не представлены (как при экранировании всех, кроме голубого), белый предмет выглядит голубым.
Это связано с изменением спектрального состава света вследствие избирательного ослабления водой его крайних диапазонов (рис. 3, по Рогов А.А, 1964). Ослабление (аттенуация) складывается из процессов поглощения (наиболее интенсивного для красного и инфракрасного диапазонов спектра света) и рассеивания (наиболее выраженного для фиолетового и ультрафиолетового). В результате чистая вода, например, горных озёр, заполненных талой водой ледников, в глубине и выглядит голубой, и освещает находящиеся в её толще предметы голубым светом.
1.1.3. Краска и цвет
Краски, которыми красят приманки, поглощают определённые участки спектра, а то, что отражается, мы и воспринимаем как тот или иной цвет. Нужно помнить, что чистых красок не бывает и в большинстве своём они отражают свет в довольно широком диапазоне (рис. 4), что по эффекту близко к экранированию одной спектральной составляющей и пропусканию остальных. Мало того, один и тот же цвет мы можем получить как с помощью одной краски, так и с помощью смешивания разных красок. Теоретически, продолжая "замешивать" краски, мы можем добиться поглощения практически всех спектральных составляющих и "на выходе" получить отражение, равное нулю. Это и будет чёрный цвет. На практике, в силу "несовершенства" красок, чёрный не получается, поэтому используются чёрные пигменты, например, сажа, которая поглощает практически весь световой поток. Поскольку чёрному пигменту всё равно, что поглощать, ничего не отражая, чёрная приманка остаётся чёрной и в воде.
1.1.4. Зеркально отражённый свет
В цвет приманки вмешивается и свойство, если таковое присутствует, зеркально отражать свет. Оно зависит от размера неровностей поверхности: если её дефекты меньше длины световых волн – свет отражается зеркально, если больше – рассеяно. Зеркальное отражение света рождает блики того света, который на данной глубине освещает приманку. Иными словами, гладкие поверхности пластиковых приманок, полированные блёсны и лакированные воблеры любого цвета бликуют одинаково – тем цветом, который превалирует в освещающем свете на данной глубине.
Таким образом, очевидно, что рыба видит приманку совсем не так, как мы. Плюс присутствие органики в пресных тёплых водоёмах резко изменяет прохождение разных длин волн света в водной среде. Плюс помутнение значительно снижает освещённость на глубине, а зрение рыбы в условиях низкой освещенности "отключает" цветовое зрение, усилив его чувствительность к свету, делая для рыбы мир чёрно-белым…
Это, однако, уже – биология.
1.2. Биология явления
1.2.1. Цвет в природной воде
Растворенные в воде вещества и взвешенные частицы изменяют характеристики света как по интенсивности, усиливая поглощение и рассеивание, так и по качеству, добавляя свои спектры поглощения.
Например, органические молекулы и мельчайшие частицы гумуса максимально поглощают коротковолновые составляющие спектра от ультрафиолетового до зелёного. Спектры поглощения хлорофилла (рис. 5, из Lythgoe, 1979, адаптировано) располагаются как в коротковолновом (фиолетовый и синий), так и в диапазоне длинных волн (оранжевый и красный). Остаются голубой, зелёный и жёлтый. В результате пресная вода, богатая органикой, в глубине выглядит летом желтовато-зелёной. Чем меньше органики, тем цвет воды в глубине ближе к голубому (зимой).
Реальная спектральная обстановка в наших водах такова, что уже на глубинах более метра практически исчезают самые коротковолновые составляющие (ультрафиолетовый и частично фиолетовый), а также, даже при незначительном цветении воды, – красный. Вооружившись таблицей цветов (табл. 1), можно представить, насколько отличается цвет освещающего приманку света на глубинах 1 и 20 метров (рис. 6, из Wetzel, 1983, адаптировано) на примере озера Чаек штата Мичиган.
1.2.2. Зависимость цвета приманки от глубины
Белая приманка уже на глубине одного метра за счёт выраженной потери освещающим светом красного и фиолетового окрашивается в дополнительные им цвета, приобретая желто-зелёный оттенок. На большой глубине, соответственно спектральному составу освещающего света, она остаётся желтовато-зелёной (много органики) или зеленовато-голубой (мало органики).
А что происходит с красной приманкой? Красные краски отражают свет в очень широком диапазоне: от красного до жёлтого включительно, поэтому красные приманки при погружении сразу цветность не теряют. Сначала уменьшается их яркость, и изменяется оттенок на оранжевый и даже жёлтый. И только на большой глубине они становятся бесцветными.
Вот характерное наблюдение потери цветов на большой глубине. "В морской воде в ясный, солнечный день… на глубине 25–30 м светло, как на воздухе в пасмурный день. Свет на этой глубине зеленоватый… Морские звезды, яркие на поверхности, с оранжевыми и фиолетовыми лучами, были похожи на бесцветные куски ткани, разбросанные по дну" (Рогов, 1964). То есть, в результате отсутствия крайних спектральных составляющих солнечного света в глубине, соответствующие им краски становятся бесцветными (но не чёрными, как пишут некоторые авторы).