Читать книгу Период полураспада группы «Хибина». Том первый - Владимир Михайлович Нагаев, Владимир Нагаев - Страница 7
Научно-документальная эпопея в трех томах
Независимое авторское расследование
Глава 2. Состав участников группы «Хибина»
Александр Колеватов
ОглавлениеАлександр Колеватов, топ-менеджмент группы. Научный руководитель экспедиции. Старший менеджер и радиохимик сектора – разведка и поиск урана. Менеджер сектора – фототеодолитная съёмка движущихся объектов.
Колеватов Александр Сергеевич – студент 4-го курса физико-технического факультета Уральского политехнического института. Родился 16 ноября 1934 года, после окончания семилетней школы поступает на маркшейдерское отделение в Свердловский горно-металлургический техникум. В 1953 году окончил среднетехническое заведение по специальности «Металлургия тяжелых цветных металлов». После окончания учебы за проявленный интерес к научной работе был оставлен в техникуме на должности техника-металлурга. Однако практически сразу после получения диплома в августе 1953 года откомандировывается на работу в НИИ Главгорстроя п/я 3394 в должности старшего лаборанта научно-исследовательской лаборатории №5. На следующий год (1954) Колеватов поступает во Всесоюзный заочный политехнический институт на специальность «Металлургия цветных металлов».
Необходимо отметить, что «атомный маршал» Лаврентий Павлович Берия, будучи наркомом внутренних дел, курировал работу НКВД-НКГБ и наркомат цветной металлургии. В наркомат цветной металлургии входили не только заводы, шахты, строящиеся объекты, но и все учебные заведения горно-металлургического профиля. По этой причине нет ничего удивительного в том, что Колеватов оказался в одном из самых секретных научно-исследовательских институтов…
В конце 1944 года Государственный комитет обороны нашей страны принял постановление об организации НИИ по урану – Института специальных металлов НКВД СССР, сокращенное наименование «Инспецмет НКВД». Приоритет в создании института принадлежит «советской мадам кюри» – Зинаиде Васильевне Ершовой, легенде отечественной радиохимии. Для строительства института в Москве была выбрана площадка в районе Октябрьского поля. В начале 1946 года «Инспецмет НКВД» в составе 10 научно-исследовательских лабораторий приступает к реализации порученных задач. Главная задача, поставленная в первые годы перед институтом – решение урановой проблемы: изучение месторождений урана, разработка методов обогащения урановых руд, разработка технологии переработки и извлечения урана в виде закиси-окиси (U3O8), разработка металлургического процесса получения металлического урана восстановлением его из фторида урана (IV), аналитическое обеспечение этих процессов. Закись-окись урана является главным компонентом основного рудного минерала – настурана. Во второй половине 1947 года работы по урану заметно сокращаются, институту ставится новая чрезвычайно важная задача – разработка технологии получения металлического плутония и изделий из него. Первичная металлургия урана передается в другой НИИ. Все внимание «Инспецмет НКВД» уделяется проблеме плутония и высокообогащенного урана. В 1952 году директором института назначается доктор технических наук Андрей Анатольевич Бочвар, специалист в области металловедения урана и плутония. К этому времени название института несколько раз менялось, после «Инспецмет НКВД» появляется НИИ-9 НКВД, затем просто НИИ-9, далее НИИ Главгорстроя п/я 3394, Предприятие п/я Р-6575. В начале 70-х годов режим секретности несколько снижается и НИИ-9 переименовывается во Всесоюзный научно-исследовательский институт неорганических материалов (ВНИИНМ). В настоящее время – АО ВНИИНМ им. академика А.А.Бочвара.
После назначения Бочвара институт стал быстро развиваться, появляются новые научно-исследовательские лаборатории. В этот период, который совпадает со временем появления Колеватого в секретном учреждении, руководство атомной промышленности принимает решение о создании ядерных реакторов на быстрых нейтронах. НИИ Главгорстроя поручают разработку тепловыделяющих элементов (ТВЭЛов) для такого типа реакторов. В это же время в институте осуществляется разработка тепловыделяющих элементов для первой в мире атомной электростанции на тепловых нейтронах, строительство которой велось на базе Физико-энергетического института в городе Обнинске…
Колеватов в НИИ Главгорстроя («Инспецмет НКВД») работал старшим лаборантом в научно-исследовательской лаборатории №5…
В 1946 году в институте создается металлургическая лаборатория №5 предназначенная для разработки технологии получения металлического урана. В лаборатории проводились исследования металлотермического процесса получения урана с использованием восстановителей кальция и магния. Кстати говоря, американцы при получении урана использовали магниетермический процесс. В середине 1947 года работы по получению металлического урана замораживаются. Лаборатория получает важное задание – разработать процесс получения искусственной начинки ядерной бомбы – металлического плутония и успешно с этой задачей справляется. В 1953 году лаборатория возвращается к разработке технологии получения различных сплавов урана в процессе металлотермического восстановления. В частности был разработан сплав урана с 9% молибдена. Такой сплав использовался в качестве ядерного топлива сначала для тепловыделяющих элементов первой в мире атомной электростанции в Обнинске, а несколько позднее – на Белоярской АЭС. Итог коллективного творчества – новый способ получения в промышленных условиях сплавов урана, как естественного, так и обогащенного.
Начальником лаборатории №5 в 1953—1959 годы был Владимир Степанович Соколов. В этот период в легендарной лаборатории работал доктор технических наук Яков Моисеевич Стерлин, соавтор учебников «Уран и его сплавы», «Металлургия плутония». Руководство работами по созданию промышленных технологий получения урана, плутония, циркония и их сплавов для ядерных реакторов и атомных электростанций осуществлял кандидат технических наук Федор Григорьевич Решетников. Впоследствии Решетников защищает докторскую диссертацию, становится первым заместителем директора ВНИИНМ, академиком РАН.
В конце 1951 года постановлением Совмина СССР под грифом «Сов. секретно» Соколову, Решетникову, Стерлину присуждается Сталинская премия II степени в размере 100 тысяч рублей за достижения в области производства плутония, урана-235 и развития сырьевой базы для атомной промышленности. В этом же документе, помимо вышеуказанных советских инженеров, значатся два немецких доктора наук – Гюнтер Вирц и Герберт Тиме. Сталинская премия в размере 100 тысяч рублей присуждалась не каждому, а на коллектив, поскольку в НИОКР все принимали совместное участие. Причем Гюнтер Вирц и Герберт Тиме, как и их предыдущий руководитель по немецкому атомному проекту штандартенфюрер СС Манфред фон Арденне, становятся дважды лауреатами Сталинской премии. Об этом факте сейчас мало кто вспоминает. А ведь именно штандартенфюрер СС Манфред фон Арденне находился во главе большого коллектива немецких и советских ученых, инженеров, лаборантов, создавших технологию производства урана-235, своеобразный «ядерный фарш» для первой советской атомной бомбы.
В последние дни войны в мае 1945 года частная атомная лаборатория штандартенфюрера СС Манфред фон Арденне добровольно сдалась советским войскам. Вместе с фон Арденне в Москву были «этапированы» свыше двухсот его коллег, около половины из них являлись докторами наук. Кстати говоря, начальник дозиметрической службы Уральского политехнического института Худенский (Штейн) с бывшим штандартенфюрером СС Манфредом фон Арденне принимал непосредственное участие в совместных научных разработках. Как и в случае с Тимофеевым-Ресовским, Худенский (Штейн) в процессе работы с академиком Манфредом фон Арденне свободно общался на немецком языке.
По некоторым источникам в советском атомном проекте участвовало около 7000 немецких ученых, инженеров и лаборантов. Каким бы талантливым ученый-физик или ученый-химик не был, без обычных помощников в лице инженеров, лаборантов он ничего не стоит. К концу 1955 года все немецкие специалисты, принимавшие участие в заложении основ советских ядерных технологий, вернулись в Германию. Таким образом, старший лаборант лаборатории №5 НИИ Главгорстроя Колеватов в течение двух лет работал в творческом сообществе специалистов, среди которых были не только советские ученые химики, физики, инженеры, работники НКВД. Но и доктора научного отдела резервных войск СС. При этом не имеет особого значения, где числились по штату немецкие лаборанты, инженеры и ученые, в самой лаборатории или секретном заводе №12 (г. Электросталь). Процесс получения металлического урана, плутония и их сплавов осуществлялся в экспериментальных лабораториях Октябрьского поля и в цехах завода…
Во время учебы на третьем курсе физико-технического факультета УПИ в период с 1 сентября по 11 октября 1958 года Колеватов проходит производственную практику на Березниковском азотно-туковом комбинате. Руководитель практики – старший преподаватель кафедры №23 физтеха П.Е.Суетин. Тема научных работ (дипломный проект, кандидатская диссертация) Суетина связана с поиском технологии центробежного производства обогащенного урана. Обе работы были защищены под руководством академика И.К.Кикоина в закрытой Лаборатории №2 (Курчатовский институт)…
В процессе технологии получения урана на горно-обогатительных фабриках с конвейера сходит три вида обогащенного продукта: низкообогащенный, высокообогащенный и обедненный. Уран с содержанием изотопа урана-235 до 20% называют низкообогащенным. Уран с обогащением до 20% находит применение в научно-исследовательских и экспериментальных ядерных реакторах. Уран с содержанием изотопа урана-235 свыше 20% называют высокообогащенным или оружейным. Высокообогащенный уран используется в качестве начинки термоядерного оружия, в реакторах космических аппаратов, на корабельных реакторах. На горно-обогатительных фабриках в отвалах остается обедненный уран с содержанием изотопа урана-235 от 0,1 до 0,3%. Термин «обогащение» означает повышение процента расщепляющего изотопа урана-235 по отношению к урану природному.
В немецком атомном проекте ведущий физик-теоретик Вернер Гейзенберг своими расчетами установил, что существуют два основных способа вызывающие цепную реакцию распада в уране: либо, повышать концентрацию изотопа уран-235 до критической массы, так называемое обогащение урана, либо изменять скорость вылетающих нейтронов таким способом, чтобы атомы урана-238 не были способны поглощать их. Первый способ (обогащение урана) для немецкой промышленности был крайне не выгоден в экономическом отношении, да и технологиями обогащения Германия не располагала. Поэтому немецкие физики, для того чтобы «урановая машина» заработала, пошли по второму пути. В качестве эффективного замедлителя необходимо было вещество способное замедлять нейтроны. Лучшим замедлителем оказалась «тяжелая вода», такая вода, в которой атомы водорода заменены его тяжелым изотопом – дейтерием.
После добровольного «пленения» немецкой атомной лаборатории фон Арденне в 1945 году в нашей стране огромными темпами развернулось производство тяжелой воды. Реактор с тяжелой водой, которая, как и графит, является замедлителем нейтронов в котле, более простой по конструкции, чем уран-графитовый и требует в 10 раз меньше металлического урана. Однако котел «уран+тяжелая вода» более энергоемкий в теплотехническом отношении. Получение тяжелой воды в промышленных масштабах значительно труднее, чем получение урана из рудного концентрата. По этой причине установки для получения тяжелой воды сложные, громоздкие по конструкции и требуют большого количества энергии. Во второй половине 1945 года советское правительство принимает решение о производстве тяжелой воды, которая шифровалась в документах под наименованием «гидроксилин». Начинается строительство и монтаж цехов «Г» на многих заводах нашей страны. МВД СССР в лице тов. Комаровского и тов. Завенягина было поручено в короткие сроки (1946—1948) осуществить строительные и монтажные работы цеха «Г» на Березниковском азотно-туковом заводе. Всего в Советском Союзе было запущено 11 цехов производства гидроксилина – тяжелой воды.
Помимо выпуска тяжелой воды на Березниковском азотно-туковом заводе накануне прибытия Колеватого с научным руководителем на производственную практику были запущены два новых цеха – хлорбензола и металлического натрия.
Атомная электростанция «эксплуатирует» ядра тяжелых химических элементов – урана и плутония. При расщеплении ядер выделяется энергия. Реакция расщепления происходит следующим образом. Ядро урана самопроизвольно распадается на несколько осколков, среди которых имеются частицы высокой энергии – нейтроны. Как правило, на каждые 10 распадов приходится 25 нейтронов. Нейтроны попадают в ядра пограничных атомов и разбивают их. При этом высвобождаются новые нейтроны и огромное количество тепла. При расщеплении 1 грамма урана выделяется примерно столько же тепла, сколько при сжигании трех тонн каменного угля. Пространство в атомном реакторе, где содержится ядерное топливо (уран), называют активной зоной. Здесь происходит расщепление атомных ядер урана и выделяется тепловая энергия. Образующееся тепло из ядерного реактора выводится при помощи жидкого или газообразного теплоносителя. Теплоноситель прокачивается мощными насосами через активную зону ядерного реактора, «экспроприирует» у ядерного топлива тепло и передает его в теплообменник. Такая замкнутая система с теплоносителем носит название первого контура. В теплообменнике тепло первого контура нагревает до кипения воду второго контура. В результате образуется пар, который направляют в турбину или используют для централизованного теплоснабжения промышленных и жилых зданий на базе комбинированного производства. Так вот, в качестве теплоносителя первого контура может быть вода, металлический натрий или газообразные вещества…
На web-проекте «Областной газеты» Свердловской области в №15 от 27.01.2017 года опубликовано интервью директора Белоярской АЭС Ивана Сидорова о работе уникального уральского реактора. Вот что пишет корреспондент издания Татьяна Ладейщикова: «В городе Заречном расположен уникальный промышленный объект, подобного которому нет, не только в России, но и в мире. Это атомная электростанция на быстрых нейтронах. Вокруг неё всегда витал ореол секретности, но специально для «ОГ» завесу тайны приоткрыл директор Белоярской АЭС Иван Сидоров.
– Иван Иванович, атомная энергетика занимает особое место в энергосистеме нашей страны, но, говорят, что у Белоярской АЭС – своё место даже в атомной энергетике.
– Это правда. Почему, постараюсь объяснить. Всего в России 10 АЭС, на которых действуют 35 энергоблоков. Все они в основном тепловые, то есть на медленных нейтронах: 18 – водо-водяные (ВВЭР), 15 построены на основе канальных графитовых реакторов. Топливом для них служит уран-235. Особенность Белоярской АЭС в том, что здесь работают два реактора, способные производить электроэнергию по другому принципу – путём применения реакции деления на быстрых нейтронах. Они вовлекают в цикл наиболее распространённый в природе изотоп урана-238. Оба энергоблока созданы по уникальным проектам. Блок с реактором БН-600 отлично работает уже более 36 лет. Блок с БН-800 включён в энергосистему в декабре 2015 года, а в прошлом году сдан в промышленную эксплуатацию.
– Если существуют типовые реакторы, зачем нужны какие-то другие?
– Реакторы на быстрых нейтронах имеют большие преимущества для развития атомной энергетики, обеспечивая замыкание ядерно-топливного цикла. За счёт полного использования в них уранового сырья увеличивается топливная база: они нарабатывают новое топливо для себя и других реакторов. Они позволяют после определённой переработки использовать отработанное топливо, которое остаётся от тепловых реакторов – то есть запускать его в цикл снова и снова получать электроэнергию. А благодаря «выжиганию» в них опасных радионуклидов уменьшится объём радиоактивных отходов. От исследований до промышленной эксплуатации пройден огромный исторический путь. Первые исследовательские реакторы на быстрых нейтронах появились в нашей стране в конце пятидесятых годов. С тех пор наработан уникальный опыт, который не могут повторить ни в одной стране мира.
– То есть быстрых реакторов, вырабатывающих электроэнергию в промышленных масштабах, кроме БАЭС, нигде больше нет?
– Действующих нет. Довести научные разработки до промышленной эксплуатации, а тем более 36 лет успешно эксплуатировать «быстрый» реактор, смогла только Россия, точнее БАЭС.
– Интересно, почему? Вроде на Западе неглупые люди…
– Конечно, неглупые, – улыбается Иван Иванович, – а вот не могут. Всё дело в уникальном проекте, создать который, увязать все тонкости и особенности производственного цикла, обеспечить высочайшую степень защиты и безопасности способны только наши специалисты.
– Вы хотите сказать, что дело в научной школе?
– Не только в научной, но и в производственной. В Свердловской области сосредоточен высочайший интеллектуальный и индустриальный потенциал. Наши быстрые реакторы были построены здесь, в том числе благодаря тому, что в регионе действуют производства, способные обеспечить нужды атомной промышленности, – например, СвердНИИхиммаш, Нижнетуринский машиностроительный завод, Уральский электромеханический завод и другие. Высококвалифицированные кадры готовит Уральский федеральный университет, с которым мы поддерживаем долголетнее сотрудничество. Институт физики металлов, Институт реакторных материалов и ряд других обеспечивают перспективные разработки атомной энергетики».
Из статьи следует, что первые исследовательские реакторы на быстрых нейтронах появились в нашей стране в конце пятидесятых годов. Реактор на быстрых нейтронах БН-600 на Белоярской АЭС успешно работает более 36 лет. Значит, примерно с 1980 года. Реактор БН-600 был построен в Свердловской области. Так, где же находился ядерный реактор на быстрых нейтронах в период с конца пятидесятых годов до 1980 года. Неужели, БН-600 Белоярской АЭС – это тот самый ядерный реактор, который использовался в пятидесятые годы сначала в УПИ в исследовательских учебно-научных целях, а затем был передан в УФАН…
Так вот, при эксплуатации реактора на быстрых нейтронах вода, которая используется в реакторах с медленными нейтронами, становится помехой. Поскольку вода и замедляет нейтроны, а для работы реактора нужны быстродвижущиеся частицы. Чем же заменили воду советские конструкторы-исследователи? Веществом, которое становилось бы жидким или газообразным при температурах, существующих в реакторе, не поглощало и не замедляло нейтроны. Проблемы с водой решили с помощью металлического натрия, к выпуску которого в пятидесятые годы приступил Березниковский азотно-туковый завод. Металлический натрий в качестве теплоносителя стали использовать по следующим причинам. Во-первых, натрий не замедляет нейтроны. Во-вторых, натрий разогревается до температуры 600 0С, при этом давление в реакторе повысится чуть выше атмосферного. Когда реактор работает под небольшим давлением, то становится гораздо безопаснее. Можно сэкономить дорогостоящую сталь на толщине корпуса по сравнению с реакторами, в которых теплоносителям является вода. В-третьих, натрий не вызывает коррозию материалов, из которых изготавливают оборудование реактора и трубопроводы. В-четвертых, натрий обладает уникальными теплофизическими свойствами: он хорошо принимает, проводит и отдает тепло. Недостаток металлического натрия: поскольку это химически активный металл, то энергично взаимодействует с водой, даже с ее парами в воздухе. Растворение в воде происходит с бурным выделением тепла и газа. А выделяющийся газ – водород! С помощью этого небезопасного газа можно запустить воздушный шар в свободный полет в атмосферу. При попадании в воду щелочной металл становится взрывоопасным. Руками металлический натрий брать нельзя – можно получить серьезный ожог…
Из былого вспоминается один нелицеприятный случай из моей школьной поры. Я очень любил химию и биологию. Как-то раз, на уроке химии в восьмом классе учительница проводила какие-то опыты со щелочными металлами и рассказала нам про все свойства натрия. Во время перемены юные алхимики 8-го «Б» класса в лице мужского пола тайно от учительницы проникли в химическую лабораторию и «стырили» из флаконов кусочки металлического натрия. В те далекие годы упаковочным материалом служила обычная газета, как правило, «Комсомольская правда». Кусочки металлического натрия при помощи пинцета аккуратно вынули из флакона с керосином, тщательно протерли ветошью, завернули в обрывки «Комсомолки» и позасовывали в свои карманы. Урок по химии был сдвоенный. После перемены учительница ничего и не заметила. Нас юных алхимиков мужского пола, кто пошел на риск, было человек семь-восемь. Кусочки взрывоопасного металла в течение 45 минут лежали у каждого в кармане возле интимного места. От тяжелых увечий нас всех спасла газета «Комсомольская правда». Обрывки газетной бумаги, словно горошины силикагеля, впитывали в себя влагу воздуха и во время урока воспламенений в паховой области не произошло. После урока юные алхимики выбежали в школьный двор и стали бросать кусочки натрия в льющуюся воду школьного умывальника. Дело было зимой. Вода из школьного умывальника хлестала круглогодично. Зимой образовывались наледи, и к нему практически не было доступа. После попадания натрия в воду стали раздаваться громкие и шипящие хлопки. Мы все (химики-алхимики) сильно испугались и понуро побрели по домам. В моем кармане оставался один газетный сверточек с кусочком натрия. При выходе со школьного двора видимо сработала интуиция, я достал этот сверток и бросил его в снег. Громкий хлопок произошел буквально в воздухе. После всего случившегося в школе был большой скандал. Влетело учительнице, поскольку она во время перемены не закрыла кабинет химической лаборатории. Нам было очень стыдно, однако ни один из химиков-алхимиков 8-го «Б» класса так и не признался в организации натриевого фейерверка во дворе школы. Молчали как партизаны. А девчонки нас сдать не могли, так как не видели, кто из парней проник в химическую лабораторию. Была большая перемена и все побежали в школьную столовую за вкусными горячими пирожками с яблочным повидлом. Кто был дежурным в этот день в классе остается только догадываться…
Помимо производства тяжелой воды и металлического натрия на Березниковском азотно-туковом заводе накануне прибытия Колеватого с научным руководителем на производственную практику был запущен новый цех – хлорбензола.
Хлорбензол – ароматическое органическое соединение, синтезирован в 1851 году в результате реакции фенола с хлоридом фосфора (V). В лабораторных условиях так он обычно и получается. Исходное сырье пентахлорид фосфора – это соединение фосфора и хлора с формулой PCl5. При нагревании пентахлорида фосфора (PCl5) и нашатыря (NH4Cl) происходит реакция образования полимера фосфонитрохлорида (полифосфонитрохлорид). Полифосфонитрохлорид (PNCl2) n – это прозрачное эластичное вещество, неорганический каучук. Из полифосфонитрохлорида получается превосходный, но необычный воздушный шарик. Искусственный латекс на основе неорганического каучука прекрасно сохраняет эластические свойства при низких температурах, выдерживает нагревание свыше 2000С. По параметрам морозостойкости латекс на основе полифосфонитрохлорида значительно превосходит хлоропреновый латекс, для которого предел низких температур составляет -450С. Впрочем, для климатических условий Северного Урала морозы ниже -450С не так уж часто наблюдаются. Как известно, из любого латекса можно сделать воздушный шар. Но, не из каждого латекса можно изготовить воздушный шар, способный в свободном полете вывести в атмосферу радиозонд специального назначения.
Ко всему сказанному хлорбензол является исходным сырьем в синтезе ядохимикатов – пестицидов. Среди этой группы токсических веществ наибольшую популярность в пятидесятые годы заслужил пестицид под наименованием «дуст» – порошок белого цвета. Швейцарский химик Пауль Мюллер в 1948 году стал лауреатом Нобелевской премии по медицине «За открытие высокой эффективности ДДТ как контактного яда». Благодаря дусту антималярийные кампании, проводимые по всему миру, спасли 5 млн. человеческих жизней. Пик дустовой эйфории приходится на 1962 год, после чего производство пестицида стало повсеместно закрываться. Дуст способен накапливаться в организме человека и может привести к интоксикации организма. Обладает канцерогенным, мутагенным, эмбриотоксическим и иммунотоксическим эффектом. Воздействие на окружающую среду могло повлечь за собой необратимые процессы деградации экосистемы нашей планеты. В настоящее время применение пестицида повсеместно запрещено.
Необходимо подвести промежуточные выводы. Итак, с каким научным направлением могла быть аффилирована производственная практика Колеватого выполняемая под руководством Суетина на Березниковском азотно-туковом заводе. Колеватов студент 4-го курса физтеха и эта практика напрямую была связана с дипломной исследовательской работой. Поскольку все научно-исследовательские работы выполняемые студентами физтеха и радиофака были сквозными. Особо следует отметить, что Колеватов по уровню знаний, умений и практических навыков был на порядок выше своих однокурсников и участников похода группы «Хибина».
Научные проблемы, связанные с тяжелой водой, металлическим натрием или хлорбензолом? Вероятность фактора «тяжелая вода» очень низкая, поскольку по замыслу патриархов советского атомного проекта приоритет отдавался уран-графитовым ядерным реакторам. Вероятность фактора «хлорбензол» не выше среднего, поскольку фактор «хлоропрен» все-таки доминировал в производстве синтетического латекса, как в нашей стране, так и за рубежом, например в США он выпускался под брендом неопрен – торговая марка компании DuPont. Вероятность фактора «металлический натрий» очень высокая. Во-первых, трудовая деятельность Колеватого в лаборатории №5 НИИ Главгорстроя («Инспецмет НКВД») связана с изготовлением ядерной начинки для тепловыделяющих элементов, нашедших применение на первой АЭС в Обнинске. Во-вторых, научная тематика дипломной исследовательской работы и кандидатской диссертации Суетина пересекалась с научными направлениями, проводимыми в лаборатории №5. В третьих, возможно, было пересечение творческой деятельности Суетина (Лаборатория №2) и Колеватого (лаборатория №5 НИИ Главгорстроя). Ведь оба персонажа настоящего расследования находились в Москве в одно время (1953—1956). Лаборатория №2 и НИИ Главгорстроя располагались на одной строительной площадке – Октябрьское поле. В четвертых Суетин и Колеватов в одно время оказались на физико-техническом факультете УПИ (1956). В пятых, в конце пятидесятых годов в УПИ находился исследовательский ядерный реактор, который затем передали в УФАН, а спустя некоторое время он оказался в Березниках на Белоярской АЭС. Приоритетный теплоноситель для реактора на быстрых нейтронах – металлический натрий. Пожалуй, последний аргумент следовало поставить на место второго пункта.
Сестры Александра Колеватого. Согласно автобиографическим данным у Колеватого четыре родные сестры. Самая старшая – Анисимова Нина Сергеевна, 1918 года рождения, работала врачом-рентгенологом в поликлинике Уральского политехнического института. Средняя – Шевченко Ангелина Сергеевна, 1921 года рождения, домохозяйка. Та, что помладше – Колеватова Вера Сергеевна, 1923 года рождения, о ней подробная информация излагалась в предыдущей главе. До августа 1956 года – преподаватель кафедры радиохимии физико-технического факультета УПИ. И самая младшая сестра – Колеватова Римма Сергеевна, 1929 года рождения, работала завучем школы №10 в городе Свердловске.
Старшая из сестер Анисимова Нина 26 февраля 1959 года на имя руководителя государства Никиты Хрущева направляет телеграмму о не возвращении к назначенному сроку 9 февраля из похода группы туристов УПИ и непринятии эффективных мер к их поиску со стороны областных организаций. Бланк официальной депеши с текстом находится на web-проекте газеты «Комсомольская правда». На правительственной телеграмме стоит московский штамп принятия информации с датой 27 февраля 1959 года. Следовательно, никакого «правительственного влияния» по обнаружению первых трупов погибших туристов она иметь не могла, поскольку палатка была найдена 26 февраля 1959 года, на следующий день – трупы.
У автора независимого расследования возникает вопрос, откуда старшая сестра Колеватова могла знать о том, что группа туристов осуществляет движение на три дня раньше контрольного срока, установленного маршрутной комиссией при Свердловском городском комитете по физической культуре и спорту. Протокол маршрутной комиссии, судя по материалам уголовного дела, был обнаружен 27 февраля 1959 года, после отправления телеграммы. Следовательно, старшая сестра Нина Анисимова, врач-рентгенолог поликлиники УПИ, была хорошо осведомлена о контрольных сроках движения и возвращения группы туристов, в которой принимал участие ее родной брат Александр Колеватов. Организатор похода Игорь Дятлов, когда с маршрута отправлял открытку домой, тоже указывал одну из дат возвращения в Свердловск 12 февраля (12—15 февраля). На дорогу с Вижая до Свердловска уходило трое суток, выходит контрольный срок прибытия группы в Вижай – 9 февраля 1959 года (9—12 февраля).
В материалах уголовного дела находится протокол осмотра места происшествия от 27 февраля 1959 года, в нем зафиксированы приобщаемые доказательства. В числе важной улики описывается банка герметичная, в которой помимо 10 фотопленок и 700 рублей находился рулон кинопленки (УД т.1, л.д.6). Второй рулон кинопленки, как вспоминают участники поисковой эпопеи, был обнаружен в районе палатки. Так вот, уважаемые читатели и дятловцеведы, рулон перфорированной кинопленки выпускаемой советской промышленностью в пятидесятые годы прошлого столетия по внешнему виду практически ничем не отличался от рулона перфорированной рентгеновской пленки. Прокурор-криминалист Иванов рулон рентгеновской пленки никогда не видел, а рулонов кинопленки в Свердловской областной прокуратуре было воз и маленькая тележка. По этой причине в протоколе появляется улика в виде рулона кинопленки. А зачем туристам группы «Хибина» при походе высшей категории трудности в район горы Отортен понадобилась рентгеновская пленка? Если сейчас эти строки читают ученики профессора Бекмана, то, несомненно, догадываются, с какой целью оказалась рентгеновская пленка в группе туристов, среди которых находился студент 4-го курса физико-технического факультета Колеватов с трехлетним стажем работы в НИИ по урану. Из числа понятых, подписавших протокол осмотра места происшествия, об этом мог догадываться лишь один человек… журналист Юрий Яровой, имевший опыт работы коллектором на прииске в геологоразведочной партии. Все геопартии СССР независимо от ведомственной принадлежности в те годы были обязаны попутно вести разведку и поиск урана. И в первую очередь это касалось геологов-золотоискателей.
Вот что показал свидетель Колеватова Римма, после общения в кабинете прокуратуры: «При восхождении на гору Отортен 1—2 февраля этого года погибла группа туристов Уральского Политехнического института (в этой группе находился и мой брат Александр Сергеевич Колеватов, студент 4-го курса физико-технического факультета)». Выходит так, что в Свердловской областной прокуратуре в апреле 1959 года никто и не скрывал того факта, что группа погибла при восхождении на гору Отортен. Об этом свидетельствуют следующие доказательства, имеющиеся в деле – письмо прокурора Свердловской области Н. Клинова на имя директора Всесоюзного научно-исследовательского института криминалистики прокуратуры СССР профессору С.А.Голунскому. Дата отправления 3 апреля 1959 года, форма и способ отправления – заказное, авиа. Вот что пишет в обращении главный прокурор всех прокуроров области: «В феврале с.г. в Свердловской области произошло чрезвычайное происшествие – в районе горы Отортен погибла группа туристов в составе 9 человек (УД т.2; Наблюдательное дело, л.д.2)». Далее в письме Клинов поясняет, что в результате свободного поиска было обнаружено 4 трупа и лишь один труп найден путем прощупывания местности стальными двухметровыми щупами. Применение миноискателей не дало результатов, так как трупы полураздеты и не имеют относительно массивных металлических предметов. Весьма любопытно, откуда Клинов мог знать, что не найденные «трупы полураздеты и не имеют относительно массивных металлических предметов». Даже обычный свидетель в лице Колеватовой Риммы догадался о том, что четверо не найденных туристов были значительно теплее одеты, исходя из перечня предметов, которых не хватает среди вещей, обнаруженных в палатке. Данный вывод свидетеля отражен в протоколе допроса.
Затем Клинов сообщает, что колоссальные затраты средств на поиски могут в дальнейшем еще возрасти, если поисковые группы не применят каких-либо новых методов в обнаружении трупов. Обращается с предложением испробовать в поисках работу прибора – ультразвукового искателя захороненных трупов. Мол, в одном из планов работы ВНИИК имеется разработка такого прибора. Спустя шесть дней прокурор Клинов из научно-исследовательского института получает телеграмму, уведомляющую о том, что «Прибором позволяющим отыскивать трупы институт не располагает».
Колеватова Римма Сергеевна считается одной из самых активных возмутителей спокойствия, в котором пребывали администрация Уральского политехнического института и исполнительные органы городской власти. Спустя три дня после окончания срока возвращения группы в Свердловск (17 февраля 1959 года) она позвонила в городскую спортивную секцию – товарищу Уфимцеву. «Он заверил, что беспокоиться не о чем, что группы задерживаются в пути и на недели». Это же, каким нужно обладать цинизмом и лицемерием, чтобы сказать, что группы задерживаются в пути и на недели. Интересно, а чем могла питаться группа Дятлова в случае задержки на несколько недель. Рацион питания туристов в лыжном походе высшей категории трудности составлял изначально всего 500 граммов, после убытия Юдина примерно 600—700 граммов на одного человека в сутки. В случае задержки группы даже на несколько дней туристы в безлюдной местности погибли бы от голода и холода.
К сожалению, в материалах уголовного дела нет протокола допроса старшей сестры – Анисимовой Нины Сергеевны, врача-рентгенолога поликлиники УПИ, автора правительственной депеши в адрес Хрущева. Нет никаких сомнений в том, что и она давала объяснения работникам прокуратуры. Однако ее показания содержали важную и закрытую информацию. Контрольные сроки возвращения группы туристов из похода указанные старшей и младшей сестрой составляют разницу в трое суток. Именно с таким опережением установленного графика шла группа в район горы Отортен. Именно 1 февраля 1959 года группа «Хибина» находилась в районе горы Отортен. Данный факт легко просчитывается арифметически после детального анализа документов находящихся в деле – «Проекта похода» (раздел «Маршрут похода по дням»), «Копии дневника группы Дятлова», дневников отдельных участников похода. Данный факт отражен в материалах уголовного дела, в том числе и главным прокурором всех прокуроров Свердловской области – Клиновым.
Спустя два месяца после увольнения Колеватого из НИИ Главгорстроя в связи с убытием на очную форму обучения в УПИ с прежнего места работы была запрошена характеристика. Вероятно, спецотделом Уральского политеха для оформления допуска по режиму секретности. На сохранившемся в архивах НИИ документе видно, что положительную характеристику на Колеватого подписал директор предприятия п/я 3394 – А.К.Уралец. НИИ Главгорстроя и предприятие п/я 3394 – это одно научно-исследовательское учреждение. Директором предприятия значился Бочвар, а одним из его заместителей был Уралец, который по статусу в отсутствии Бочвара исполнял обязанности директора…
Уралец Александр Константинович – полковник госбезопасности с 1945 года, в период с 1924 по 1939 годы работал в органах ВЧК-ОГПУ-НКВД. Уралец – это псевдоним, настоящая фамилия Кетов. С 1939 года по август 1941 года работает заместителем на крупнейших объектах промышленности, находившихся в ведении НКВД, в том числе на предприятии Челябметаллургстрой. В августе 1941 года назначается заместителем начальника 3-го Управления ГУОБР НКВД, которому было поручено возведение тыловых оборонительных рубежей на подступах к Москве. Особо следует отметить, что Золотарев в октябре 1941 года тоже был призван в структуру ГУОБР НКВД на возведение тыловых оборонительных рубежей на подступах к Ростову. В 1944 году Уралец возвращается на должность заместителя директора Челябметаллургстроя. В 1946 – 1952 годы работает начальником секретного объекта Лаборатория «Б» (санаторий Сунгуль, Челябинская область), на котором совершали свои трудовые подвиги Вознесенский, Лучник и Тимофеев-Ресовский. Все трое преподавали и/или читали курсы лекций на физико-техническом факультете Уральского политеха. Причем Тимофеев-Ресовский стал читать курс лекций по радиобиологии после гибели туристов группы «Хибина». С 1952 по 1984 годы Уралец бессменный заместитель директора НИИ Главгорстроя (предприятие п/я 3394, Всесоюзный НИИ неорганических материалов). Характеристику на Колеватого, причем положительного типа, подписал полковник госбезопасности Уралец…