Читать книгу Стандарты изобретательства. Учебник. ТРИЗ - Владимир Петров - Страница 6
Глава 1. Краткие сведения о законах развития систем и вепольном анализе
Оглавление1.1. Представления о законах развития систем
При создании системы стандартов на решение изобретательских задач Г. С. Альтшуллер использовал только некоторые законы из группы эволюции систем. Детально законы развития систем изложены в монографии3.
Мы кратко опишем только те законы и закономерности, которые использовались при разработке системы законов.
Основные из законов эволюции систем следующие (рис. 1.1):
– закон увеличения степени идеальности;
– закон увеличения степени управляемости и динамичности;
– закон перехода в надсистему;
– закон перехода на микроуровень;
– закон свертывания;
– закон согласования;
– закон сбалансированного развития систем.
Рис. 1.1. Структура законов эволюции систем
Из указанных законов для создания стандартов Г. С. Альтшуллер использовал только законы увеличения степени управляемости и динамичности, перехода в надсистему и на микроуровень, да и то не в полном объеме.
Закон увеличения степени управляемости и динамичности имеет подзакон – закон изменения степени вепольности и закономерность изменения управляемости веществом, энергией и информацией (рис. 1.2).
Рис. 1.2. Структура закона увеличения степени управляемости и динамичности
Закон увеличения степени вепольности будет изложен в п. 1.2.
Закономерность изменения управляемости веществом, энергией и информацией подразделяется на закономерности (рис. 1.3):
– Изменения управляемости веществом;
– Изменения управляемости энергией и информацией.
Рис. 1.3. Закономерность увеличения степени управляемости и динамичности
В свою очередь, закономерность увеличения степени управляемости веществом осуществляется (рис. 1.4):
– использованием «умных» веществ;
– увеличением концентрации вещества;
– увеличением количества степеней свободы;
– увеличением степени дробления;
– переходом к капиллярно-пористым материалам (КПМ).
Рис. 1.4. Закономерность увеличения степени управляемости веществом
Из этих закономерностей Альтшуллером были использованы увеличение степени дробления и переход к КПМ. В упрощенном виде опишем их ниже.
Увеличение степени управляемости энергией и информацией осуществляется (рис. 1.5):
– изменением концентрации энергии и информации;
– переходом к более управляемым полям.
Переходу к более управляемым полям выполняется:
– Заменой виде поля;
– Переходом МОНО-БИ-ПОЛИ полям;
– Динамизацией полей.
Рис. 1.5. Закономерность увеличения степени управляемости энергией и информацией
Из этих закономерностей для создания стандартов была использована только закономерность перехода к более управляемым полям.
В данной книге она будет дана в очень упрощенном виде.
Замена вида поля на более управляемое поле может осуществляться в следующей последовательности: гравитационное, механическое, тепловое, электромагнитное и любые комбинации этих полей. Эта закономерность показана на рис. 1.6.
Рис. 1.6. Увеличения управляемости полей
Последовательность увеличения степени дробления в упрощенном виде представлена на рис. 1.7.
Рис. 1.7. Схема тенденции увеличения степени дробления
В упрощенном виде закономерность перехода к КПМ представить в виде схемы (рис. 1.8).
Рис. 1.8. Общая схема перехода к КПМ
где
# – структура;
В – вещество;
ТЭ – технологический эффект (физический, химический и т. д.);
КПМ# – КПМ со структурированными капиллярами;
µКПМ# – µКПМ со структурированными капиллярами.
Закон перехода на микроуровень, Альтшуллер описывает как замену системы или ее части веществом, способным при взаимодействии с полем выполнять требуемое действие.
Закон перехода в надсистему – это объединением системы с другими системами с помощью тенденции: МОНО-БИ-ПОЛИ-Свертывание.
Объединения в би- и полисистему может включать следующие виды элементов.
1. Однородные
– Одинаковые.
– Однородные элементы со сдвинутыми характеристиками.
2. Неоднородные
– Альтернативные.
– Антагонистические – инверсные (элементы с противоположными свойствами или функциями).
– Дополнительные.
Полностью схема закона перехода системы в надсистему представлена на рис. 1.9.
Рис. 1.9. Общая схема объединения систем
1.2. Представления о вепольном анализе
Структурный вещественно-полевой (вепо́льный) анализ – раздел ТРИЗ, изучающий и преобразующий структуру систем. Вепо́льный анализ разработан Г. С. Альтшуллером.
Вепо́льный анализ – это язык схем, позволяющий представить исходную систему в виде определенной (структурной) модели. С помощью специальных правил выявляются свойства этой системы. Затем по конкретным закономерностям преобразовывают исходную модель задачи и получают структуру решения, которое устраняет недостатки исходной системы.
Статистический анализ решений показал, что для повышения эффективности систем их структура должна быть определенной. Модель такой структуры называется веполем.
Вепо́ль – модель минимально управляемой системы, состоящей из двух взаимодействующих объектов и их взаимодействия.
Взаимодействующие объекты условно названы веществами и обозначаются В1 и В2, а само взаимодействие называется полем и обозначается П.
Под «веществом» будем понимать любой объект, начиная с материала, его структуры, молекул, атомов, до самых сложных систем, например космическая станция. В информационных системах это может быть элемент или данные.
Поле может представлять собой любое действие или взаимодействие, например энергию, силу или информацию. В информационных системах это может быть алгоритм.
Веполь изображается схемой (1.1).
Термин ВеПоль произошел от слов «Вещество» и «Поле».
Вепольный анализ включает в себя определенные правила и тенденции. Эти тенденции подчиняются закону увеличения степени вепольности, который будет описан ниже.
Общая тенденция представлена на рис. 1.10 – 1.15.
Рис. 1.10. Общая тенденция развития веполей
Рис. 1.11. Тенденция развития структуры веполя
Рис. 1.12. Тенденция развития комплексного веполя
Рис. 1.13. Тенденция развития сложного веполя
Рис. 1.14. Тенденция развития форсированного веполя
Форсирование вещества подчинается закономерности увеличения степени управляемости веществом, а форсирование поля – закономерности увеличения степени управляемости энергией и информацией.
Детальная схема закона увеличения степени вепольности представлена на рис. 1.15.
Подробно с вепольным анализом можно ознакомиться в учебнике4.
Рис. 1.15. Общая схема закона увеличения степени вепольности
3
Петров Владимир. Законы развития систем: ТРИЗ / Владимир Петров. [б. м.]: Издательские решения, 2018. – 894 с. – ISBN 978-5-4490-9985-3 (элктронная книга).
4
Петров Владимир. Структурный анализ систем: Вепольный анализ. ТРИЗ / Владимир Петров. [б. м.]: Издательские решения, 2018. – 206 с. – ISBN 978—5