Читать книгу Слова и числа - Владимир Валентинович Трошин - Страница 6

Часть 1. Буквы и слова
Топология букв

Оглавление

Еще немного чистой математики, причем не изучаемой в школе, применительно к языковому исходному материалу. Посмотрим на буквы с точки зрения топологии.

Топология (греч. toposместо и logosслово, понятие, учение) – раздел математики, изучающий наиболее общие свойства геометрических фигур (свойства, не изменяющиеся при любых непрерывных преобразованиях фигур).

Представьте себе, что большие печатные буквы сделаны из гибкого и растяжимого материала, например из проволоки, и их можно распрямлять, растягивать, выводить из плоскости, переворачивать и переносить в другое место. Подобные преобразования называются топологическими. Две буквы называются топологически эквивалентными, если их можно перевести друг в друга такими непрерывными деформациями (не разрешается разрезать или склеивать буквы!). Например, возьмем проволочную букву Г, из нее легко можно сделать буквы С или П, распрямив и согнув по-другому, но нельзя сделать букву О, для этого проволоку нужно спаять или склеить, а эта операция запрещена. По признаку топологической эквивалентности все буквы можно разбить на несколько классов. Буквы Г, З, И, Л, М, П, С относятся к простейшему классу, распрямив, их можно все превратить в отрезок прямой ________. Если распрямить буквы Е, Т, У, Ц, Ч, Ш, Э получатся три отрезка, спаянные одним концом в общей точке и так далее.


[?-4]

Попробуйте разделить все буквы русского алфавита, цифры и буквы английского алфавита на топологические классы эквивалентности (кроме, состоящих из нескольких не соединяющихся элементов, букв Ё, Й, Ы). Для упрощения работы, показаны характеристические фигуры каждого класса для букв русского языка.


Слова и числа

Подняться наверх