Читать книгу The Chemistry of Cookery - W. Mattieu Williams - Страница 6

CHAPTER IV.
GELATIN, FIBRIN, AND THE JUICES OF MEAT.

Оглавление

Table of Contents

Gelatin is a very important element of animal food; it is, in fact, the main constituent of the animal tissues, the walls of the cells of which animals are built up being composed of gelatin. I will not here discuss the question of whether Haller’s remark, ‘Dimidium corporis humani gluten est’ (‘half of the human body is gelatin’), should or should not now, as Lehmann says, ‘be modified to the assertion that half of the solid parts of the animal body are convertible, by boiling with water, into gelatin.’ Lehmann and others give the name of ‘glutin’ to the component of the animal tissue as it exists there, and gelatin to it when acted upon by boiling water. Others indicate this difference by naming the first ‘gelatin,’ and the second ‘gelatine.’

The difference upon which these distinctions are based is directly connected with my present subject, as it is just the difference between the raw and the cooked material, which, as we shall presently see, consists mainly in solubility.

Even the original or raw gelatin varies materially in this respect. There is a decidedly practical difference between the solubility of the cell-walls of a young chicken and those of an old hen. The pleasant fiction which describes all the pretty gelatine preparations of the table as ‘calf’s-foot jelly,’ is founded on the greater solubility of the juvenile hoof, as compared to that of the adult ox or horse, or to the parings of hides about to be used by the tanner. All these produce gelatin by boiling, the calves’ feet with comparatively little boiling.

Besides these differences there are decided varieties, or, I might say, species of gelatin, having slight differences of chemical composition and chemical relations. There is Chondrin, or cartilage gelatin, which is obtained by boiling the cartilages of the ribs, larynx, or joints for eighteen or twenty hours in water. Then there is Fibroin, obtained by boiling spiders’ webs and the silk of silkworms or other caterpillars. These exist as a liquid inside the animal, which solidifies on exposure. The fibres of sponge contain this modification of gelatin.

Another kind is Chitin, which constituted the animal food of St. John the Baptist, when he fed upon locusts and wild honey. It is the basis of the bodily structure of insects; of the spiral tubes which permeate them throughout, and are so wonderfully displayed when we examine insect anatomy by aid of the microscope; also of their intestinal canal, their external skeleton, scales, hairs, &c. It similarly forms the true skeleton and bodily framework of crabs, lobsters, shrimps, and other crustacea, bearing the same relation to their shells, muscles, &c., that ordinary gelatin does to the bones and softer tissues of the vertebrata; it is ‘the bone of their bones, and the flesh of their flesh.’ It is obtainable by boiling these creatures down, but is more difficult of solution than the ordinary gelatin of beef, mutton, fish, and poultry. To this difficulty of solution in the stomach, the nightmare that follows lobster suppers is probably attributable.

I once had an experience of the edibility of the shells of a crustacean. When travelling, I always continue the pursuit of knowledge in restaurants by ordering anything that appears on the bill of fare that I have never heard of before, or cannot translate or pronounce. At a Neapolitan restaurant I found ‘Gambero di Mare’ on the Carta, which I translated ‘Leggy things of the sea,’ or sea-creepers, and ordered them accordingly. They proved to be shrimps fried in their shells, and were very delicious—like whitebait, but richer. The chitin of the shells was thus cooked to crispness, and no evil consequences followed. If reduced to locusts, I should, if possible, cook them in the same manner, and, as they have similar chemical composition, they would doubtless be equally good.

Should any epicurean reader desire to try this dish (the shrimps, I mean), he should fry them as they come from the sea, not as they are sold by the fishmonger, these being already boiled in salt water; usually in sea water by the shrimpers who catch them, the chitin being indurated thereby.

The introduction of fried and tinned locusts as an epicurean delicacy would be a boon to suffering humanity, by supplying industrial compensation to the inhabitants of districts subject to periodical plagues of locust invasion. The idea of eating them appears repulsive at first, so would that of eating such creepy-crawly things as shrimps, if no adventurous hero had made the first exemplary experiment. Chitin is chitin, whether elaborated on the land or secreted in the sea. The vegetarian locust and the cicala are free from the pungent essential oils of the really unpleasant cockchafer.

That curious epicurean food, the edible birds’-nests, which has been a subject of much controversy concerning its composition, is commonly described as a delicate kind of gelatin. This does not appear to be quite correct. It is certainly gelatinous in its mechanical properties, but it more nearly resembles the material of the slime and organic tissue of snails, a substance to which the name of mucin has been given. Thus the birds’-nest soup of the East and the snail soup of the West are nearly allied, and that made from callipash and callipee supplies an intermediate reptilian link.

The birds’-nests, when cleaned for cooking, are entirely composed of the dried saliva of swallows, or rather swiftlets (collocalia), and this saliva probably contains some amount of digestive ferment or pepsin, which may render it more digestible than the vulgar product from shin of beef, and consequently more acceptable to feeble epicures. Those who have sufficient vital energy to supply their own saliva will probably prefer the vulgar concoction to the costly secretion. The bird saliva sells for its own weight in silver, when freed from adhering impurities.[6]

Those who are disposed to bow too implicitly to mere authority in scientific matters will do well to study the history and the treatment which gelatin has received from some of the highest of these authorities. Our grandmothers believed it to be highly nutritious, prepared it in the form of jellies for invalids, and estimated the nutritive value of their soups by the consistency of the jelly which they formed on cooling, which thickness is due to the gelatin they contain. Isinglass, which is simply the swim-bladder of the sturgeon and similar fishes cut into shreds, was especially esteemed, and sold at high prices. This is the purest natural form of gelatin.

Everybody believed that the callipash and callipee of the alderman’s turtle soup contributed largely to his proverbial girth, and those who could not afford to pay for the gelatin of the reptile, made mock turtle from the gelatinous tissues of calves’-heads and pigs’-feet.

About fifty or sixty years ago, the French Academy of Sciences appointed a bone-soup commission, consisting of some of the most eminent savants of the period. They worked for above ten years upon the problem submitted to them, that of determining whether or not the soup made by boiling bones until only their mineral matter remained solid, is, or is not, a nutritious food for the inmates of hospitals, &c. In the voluminous report which they ultimately submitted to the Academy, they decided in the negative.

Baron Liebig became the popular exponent of their conclusions, and vigorously denounced gelatin, as not merely a worthless article of food, but as loading the system with material that demands wasteful effort for its removal.

The Academicians fed dogs on gelatin alone, found that they speedily lost flesh, and ultimately died of starvation. A multitude of similar experiments showed that gelatin alone will not support animal life, and hence the conclusion that pure gelatin is worthless as an article of food, and that ordinary soups containing gelatin owed their nutritive value to their other constituents. According to the above-named report, and the statements of Liebig, the following, which I find on a wrapper of Liebig’s ‘Extract of Meat,’ is justifiable: ‘This Extract of Meat differs essentially from the gelatinous product obtained from tendons and muscular fibre, inasmuch as it contains 80 per cent. of nutritive matter, while the other contains 4 or 5 per cent.’ Here the 4 or 5 per cent. allowed to exist in the ‘gelatinous product’ (i.e. ordinary kitchen stock or glaze), is attributed to the constituents it contains over and above the pure gelatin.

The following, from a text-book largely used by medical students,[7] shows the estimation in which gelatin was held at that date: ‘But there is another azotised compound, Gelatin, that is furnished by animals, to which nothing analogous exists in Plants; and this is commonly reputed to possess highly nutritious properties. It may be confidently affirmed, however, as a result of experiments made upon a large scale, that Gelatin is incapable of being converted into Albumen in the animal body, so that it cannot be applied to the nutrition of the albuminous tissues. And, although it might à priori be thought not unlikely that Gelatin, taken in as food, should be applied to the nutrition of the gelatinous tissues, yet neither observation nor experiment bears out such a probability.’ Further on, Dr. Carpenter says: ‘The use of gelatin as food would seem to be limited to its power of furnishing a certain amount of combustive material that may assist in maintaining the heat of the body.’

Subsequent experiments, however, have refuted these conclusions. I must not be tempted to describe them in detail, but only to state the general results, which are, that while animals fed on gelatin soup, formed into a soft paste with bread, lost flesh and strength rapidly, they recovered their original weight when to this same food only a very small quantity of the sapid and odorous principles of meat were added. Thus, in the experiments of MM. Edwards and Balzac, a young dog that had ceased growing, and had lost one-fifth of its original weight when fed on bread and gelatin for thirty days, was next supplied with the same food, but to which was added, twice a day, only two tablespoonfuls of soup made from horseflesh. There was an increase of weight on the first day, and, ‘in twenty-three days the dog had gained considerably more than its original weight, and was in the enjoyment of vigorous health and strength.’

All this difference was due to the savoury constituents of the four tablespoonfuls of meat soup, which soup contained the juices of the flesh, to which, as already stated, its flavour is due.

The inferences drawn by M. Edwards from the whole of the experiments are the following: ‘1. That gelatin alone is insufficient for alimentation. 2. That, although insufficient, it is not unwholesome. 3. That gelatin contributes to alimentation, and is sufficient to sustain it when it is mixed with a due proportion of other products which would themselves prove insufficient if given alone. 4. That gelatin extracted from bones, being identical with that extracted from other parts—and bones being richer in gelatin than other tissues, and able to afford two-thirds of their weight of it—there is an incontestable advantage in making them serve for nutrition in the form of soup, jellies, paste, &c., always, however, taking care to provide a proper admixture of the other principles in which the gelatin-soup is defective. 5. That to render gelatin-soup equal in nutritive and digestible qualities to that prepared from meat alone, it is sufficient to mix one-fourth of meat-soup with three-fourths of gelatin-soup; and that, in fact, no difference is perceptible between soup thus prepared and that made solely from meat. 6. That in preparing soup in this way, the great advantage remains, that while the soup itself is equally nourishing with meat-soup, three-fourths of the meat which would be requisite for the latter by the common process of making soup are saved and made useful in another way—as by roasting, &c. 7. That jellies ought always to be associated with some other principles to render them both nutritive and digestible.’[8]

The reader may make a very simple experiment on himself by preparing first a pure gelatin-soup from isinglass, or the prepared gelatin commonly sold, and trying to make a meal of this with bread alone. Its insipidity will be evident with the first spoonful. If he perseveres, it will become not merely insipid, but positively repulsive; and, should he struggle through one meal and then another, without any other food between, he will find it, in the course of time (varying with constitution and previous alimentation), positively nauseous.

Let him now add to it some of Liebig’s ‘Extract of Meat,’ and he will at once perceive the difference. Here the natural appetite foreshadows the result of continuing the experiment, and points the way to correcting the errors of the Academicians and Baron Liebig. The jellies that we take at evening parties, or the jujubes used as sweetmeats, are flavoured with something positive. I have tasted ‘Blue-Ribbon’ jellies that were wretchedly insipid. This was not merely owing to the absence of alcohol, of which very little can remain in such preparations, but rather to the absence of the flavouring ingredients of the wine.

I venture to suggest the further, deliberate, and scientific extension of this principle, by adding to bone-soup, or other form of insipid gelatin, the potash, salts, phosphates, &c., which are found in the juices of meat and vegetables. They may either be prepared in the manufacturing laboratory, like Parrish’s ‘Chemical Food,’ or ‘Syrup of phosphates,’ or extracted from fruits, as commercial limejuice is extracted. I recommend those who are interested to manufacture and offer for sale a good preparation of limejuice gelatin.

It would seem that gelatin alone, although containing the elements required for nutrition, requires something more to render it digestible. We shall probably be not far from the truth if we picture it to the mind as something too smooth, too neutral, too inert, to set the digestive organs at work, and that it therefore requires the addition of a decidedly sapid something that shall make these organs act. I believe that the proper function of the palate is to determine our selection of such materials; that its activity is in direct sympathy with that of all the digestive organs; and that if we carefully avoid the vitiation of our natural appetites, we have in our mouths, and the nervous apparatus connected therewith, a laboratory that is capable of supplying us with information concerning some of the chemical relations of food which is beyond the grasp of the analytical machinery of the ablest of our scientific chemists.

What is the chemistry of the cookery of gelatin? What are the chemical changes effected by cookery upon gelatin? Or, otherwise stated, what is the chemical difference or differences between cooked and raw gelatin? I find no satisfactory answer to these questions in any of our text-books, and therefore will do what I can towards supplying my own solution of the problem.

In the first place, it should be understood that raw gelatin, or animal membrane as it exists in its organised condition, is not soluble in cold water, and not immediately in hot water. Genuine isinglass is the membrane of the swim-bladder of the sturgeon (that of other fishes is said to be sometimes substituted). In its unprepared form it is not easily dissolved, but if soaked in water, especially in warm water, for some time, it swells. The same with other forms of membrane. This swelling I regard as the first stage of the cookery. On examination, I find that it is not only increased in bulk but also in weight, and that the increase of weight is due to some water that it has taken into itself. Here, then, we have crude gelatin plus water, or hydrated gelatin. Proceeding further, by boiling this until it all dissolves, and then allowing it to harden by very slow evaporation, I find that it still contains some of its acquired water, and that I cannot drive away this newly-acquired water without destroying some of its characteristic properties—its solubility and gluey character. Before returning to its original weight as crude isinglass, it becomes somewhat carbonised.

Hence, I infer that the cookery of gelatin consists in converting the original membrane more or less completely into a hydrate of its former self. According to this, the ‘prepared gelatin’ sold in the shops is hydrated gelatin, completely hydrated, seeing that it is completely and readily soluble.

The membranes of our ordinary cooked meat are, if I am right, partially hydrated, in varying degrees, and thereby prepared for solution in the course of digestion. The varying degrees are illustrated by the differences in a knuckle of veal or a calf’s head, according to the length of time during which it has been stewed, i.e. subjected to the hydrating process.

The second stage of the cookery of gelatin is the solution of this hydrate, as in soups, &c.

Carpenters’ glue is crude hydrated gelatin, made by stewing or hydrating hoofs of horses, cattle, &c., or the waste cuttings of hides. The carpenter knows that if he allows his solution of glue to boil (such a solution boils at a higher temperature than pure water), it loses its tenacity, becomes cindery, or, as I should say, dehydrated or dissociated, without returning to the original condition of the organised membranes.

Even a frequent reheating at the glue-pot temperature ‘weakens’ the glue, and therefore he prefers fresh glue, and puts but a little at a time into his glue-pot.

The applications of this theory will appear as I proceed.

A sheep or an ox, a fowl or a rabbit, is made up, like ourselves, of organic structures and blood, the organs continually wasting as they work, and being renewed by the blood; or, otherwise described, the component molecules of these organs are continually dying of old age as their work is done, and replaced by new-born successors generated by the blood.

These molecules are, for the most part, cellular, each cell living a little life of its own, generated with a definite individuality, doing its own life-work, then shrivelling in decay, dying in the midst of vital surroundings, suffering cremation, and thereby contributing to the animal heat necessary for the life of its successors, and even giving up a portion of its substance to supply them with absorption-food. The cell walls are mainly composed of gelatin, or the substance which produces gelatin, as already explained, while the contents of the cell are albuminous matter or fat, or the special constituents of the particular organ it composes. A description of all these constituents would carry me too far into details. I must, therefore, only refer to those which constitute the bulk of animal food, and which are altered in the process of cooking.

In the lean of meat, i.e. the muscles of the animal, we have the albuminous juices already described, the gelatinous membranes, sheaths, and walls of the muscle fibre, and the fibre itself. This is composed of muscle-fibrin, or syntonin, as Lehmann has named it. Living blood consists of a complex liquid, in which are suspended a multitude of minute cells, some red, others colourless. When the blood is removed and dies, it clots or partially solidifies, and is found to contain a network of extremely fine fibre, to which the name of fibrin is applied. A similar change takes place in the substance of the muscle after death. It stiffens, and this stiffening, or rigor mortis, is effected by the formation of a clot analogous to the coagulation of the blood.

The chief difference between blood-fibrin and muscle-fibrin or syntonin is, that the latter is readily soluble in water, to which only 1/1000 of hydrochloric acid has been added, while in such a solution blood-fibrin only becomes swollen. If the gastric juice contains a little free hydrochloric acid, this difference is important in reference to food. I should, however, add that the existence of such free acid in the human gastric juice is disputed, especially by Gruenewaldt and Schroeder.

The conflict of able chemists on this point and others concerning the composition of this fluid leads me to suppose that the secretions of the human stomach vary with the food habitually taken; that flesh-eaters acquire a gastric juice similar to that of carnivorous animals, while vegetable feeders are supplied with digestive solvents more suitable to their food.

This idea is supported by the testimony of rigid vegetarians. They tell me that at first the pure vegetarian diet did not appear to satisfy them, but after a while it became as sustaining as their former food. This is explained if, in consequence of the modification of the gastric and other digestive juices, the vegetarian food became more completely digested after vegetarian habits became established.

The properties of fibrin, so far as cookery is concerned, place it between albumen and gelatin; it is coagulable like albumen, and soluble like gelatin, but in a minor degree. Like gelatin, it is tasteless and non-nutritious alone. This has been proved by feeding animals on lean meat, which has been cut up and subjected to the action of cold water, which dissolves out the albumen and other juices of the flesh, and leaves only the muscular fibre and its envelopes. The experiment has been made in laboratories, and also on a larger scale in Australia, where the lean beef from which the ‘Extract of Meat’ had been taken out by cold water was given to dogs, pigs, and other animals; but, after taking a few mouthfuls, they all rejected it, and suffered starvation when it was forced upon them without other food.

The same is the case with the spontaneously coagulated fibrin of the blood; it is, when washed, a yellowish opaque fibrous mass, without smell or taste, insoluble in cold water, alcohol, or ether, but imperfectly soluble if digested for a considerable time in hot water.

The following is the chemical composition of these three constituents of lean meat, according to Mulder:

Albumen Gelatine Fibrin
Carbon 53·5 50·40 52·7
Hydrogen 7·0 6·64 6·9
Nitrogen 15·5 18·34 15·4
Oxygen 22·0 24·62 23·5
Sulphur 1·6 1·2
Phosphorus 0·4 0·3
100·0 100·00 100·0

There are two other constituents of lean meat which are very different from either of these, viz. Kreatine and Kreatinine, otherwise spelled ‘creatine’ and ‘creatinine.’ They exist in the juice of the flesh, and are freely soluble in cold or hot water, from which solution they may be crystallised by evaporating the solvent, just as we may crystallise common salt, alum, &c. They thus have a resemblance to mineral substances, and still more so to some of the active constituents of plants, such as the alkaloids theine and caffeine, upon which depend the stimulating or ‘refreshing’ properties of tea and coffee. Like these, they are highly nitrogenous, and many theories have been based upon this, both as regards their exceptionally nutritious properties and their functions in the living muscle. One of these theories is that they are the dead matter of muscle, the first and second products of the combustion which accompanies muscular work, urea being the final product. According to this their relation to the muscle is exactly the opposite of that of the albuminous juice, this being probably the material from which the muscle is built up or renewed. The following is their composition, according to Liebig’s analyses, and does not support this hypothesis:

Kreatine Kreatinine
Carbon 36·64 42·48
Hydrogen 6·87 6·19
Nitrogen 32·06 37·17
Oxygen 24·43 14·16
100·00 100·00

They appear to undergo no change in cooking unless excessively heated; may be used uncooked, as in cold-drawn extract of meat.

The juices of lean flesh also contain a little lactic acid—the acid of milk—but this does not appear to be an absolutely essential constituent. Besides these there are mineral salts of considerable nutritive importance, though small in quantity. These, with the kreatine and kreatinine, are the chief constituents of beef-tea properly so-called, and will be further treated when I come to that preparation. At present it is sufficient to keep in view the fact that these juices are essential to complete the nutritive value of animal food.

The Chemistry of Cookery

Подняться наверх