Читать книгу Great Inventions and Discoveries - Willis Duff Piercy - Страница 5

CHAPTER III

Оглавление

Table of Contents

THE STEAM ENGINE

THE SONG OF STEAM

By George Washington Cutter

Harness me down with your iron bands;

Be sure of your curb and rein;

For I scorn the power of your puny hands,

As the tempest scorns a chain.

How I laughed as I lay concealed from sight

For many a countless hour,

At the childish boast of human might,

And the pride of human power.

When I saw an army upon the land,

A navy upon the seas,

Creeping along, a snail-like band,

Or waiting the wayward breeze;

When I marked the peasant faintly reel

With the toil which he daily bore,

As he feebly turned the tardy wheel,

Or tugged at the weary oar;

When I measured the panting courser's speed,

The flight of the courier dove,

As they bore the law a king decreed,

Or the lines of impatient love—

I could not but think how the world would feel,

As these were outstripped afar,

When I should be bound to the rushing keel,

Or chained to the flying car;

Ha, ha! they found me out at last;

They invited me forth at length;

And I rushed to my throne with a thunder-blast,

And I laughed in my iron strength.

Oh, then ye saw a wondrous change

On the earth and the ocean wide,

Where now my fiery armies range,

Nor wait for wind and tide.

Hurrah! hurrah! the waters o'er;

The mountain's steep decline;

Time—space—have yielded to my power;

The world—the world is mine!

The rivers the sun hath earliest blest,

Or those where his beams decline;

The giant streams of the queenly West,

And the Orient floods divine.

The ocean pales where'er I sweep,

I in my strength rejoice;

And the monsters of the briny deep

Cower, trembling, at my voice.

I carry the wealth and the lord of earth,

The thoughts of his god-like mind;

The wind lags after my going forth,

The lightning is left behind.

In the darksome depths of the fathomless mine

My tireless arm doth play,

Where the rocks never saw the sun decline,

Or the dawn of the glorious day.

I bring earth's glittering jewels up

From the hidden caves below,

And I make the fountain's granite cup

With a crystal gush o'erflow.

I blow the bellows, I forge the steel,

In all the shops of trade;

I hammer the ore, and turn the wheel,

Where my arms of strength are made;

I manage the furnace, the mill, the mint;

I carry, I spin, I weave;

And all my doings I put into print

On every Saturday eve.

I've no muscle to weary, no breast to decay,

No bones to be "laid on the shelf,"

And soon I intend you may "go and play,"

While I manage this world myself.

But harness me down with your iron bands,

Be sure of your curb and rein;

For I scorn the power of your puny hands,

As the tempest scorns a chain!

The most powerful and important mass of matter on the earth is the steam engine. It is the throbbing heart of civilization, even as the printing press is its brain. It would be difficult for man to compute his debt to steam. Upon it he relies for food, clothing, and shelter, the three necessities for which the race has always striven; and without it he could have scarcely any of life's comforts and luxuries. Steam is the mistress of commerce, manufacturing, and mining, and the servant of agriculture. Steam gives employment to millions of men. It plants cities and towns in waste places. It enables man to leave the little valley or hillside where his fathers lived, and makes of him a citizen of the world. It lessens the power of time and space, and makes neighbors of ocean-divided continents.

It would not be easy for men living in the twentieth century to imagine a society uninfluenced by the use of steam; but nearly all of man's life on the earth has been passed without its help. Fire and water, the two productive factors of steam, have always existed; but it was not until a few score of years ago that man learned to put them together successfully, and to produce the greatest force known to civilization. In the few years since its discovery it has spread to every nook and corner of civilization. Suppose you could ascend to some great height whence you could see working at one time all the steam driven machinery in the world. What a sight it would be! What if the noise from all this machinery—the screech of the speeding locomotive, the hum and roar of factory and mill, the hoarse yell of ships, and the puffing of mine-engines—should reach your ear at once? What a sound it would be!

The idea of using steam for driving stationary machinery originated in the early centuries. This was the first use to which steam was put. For a long time no one seems to have thought of using it for transportation purposes. As far back as 130 B.C., we find mention of "heat engines," which employed steam as their motive power, and were used for organ blowing, the turning of spits, and like purposes. But from this early date till the seventeenth century practically no progress was made in the use of steam. Though men had experimented with steam up to this time with more or less success, the world is chiefly indebted for the developed type of the steam engine to James Watt and George Stephenson.

Watt was born in Greenock, Scotland, January 19, 1736. He was a poor boy and early in life he was thrown upon his own resources. During his youth he struggled against ill health; for days at a time he was prostrated with severe headaches. But he was bright, determined, and had a genial disposition that made him many friends. When he was twenty-one years old, he secured a position as maker of scientific instruments for the university in Glasgow. He began discussing with some scientific friends at the university the possibility of improving the steam engine, which at that time was used only for pumping water, chiefly in the drainage of mines. He entered upon a scientific study of the properties of steam and tried to devise means for making the steam engine more useful. One Sunday afternoon early in 1765, while walking in Glasgow, the idea he had studied so long to evolve suddenly flashed into his mind. Without delay Watt put his plan to the test and found that it worked.

For a long time, owing to a lack of money, he had difficulty in establishing the merits of his improvements. Finally he formed a partnership with Matthew Boulton, a wealthy and energetic man who lived at Birmingham, England. They began the manufacture of steam engines at Birmingham, under the firm name of Boulton and Watt. This partnership was very successful. Watt supplied the inventions; Boulton furnished the money and attended to the business.

Before the time of Watt, the steam engine was exclusively a steam pump—slow, cumbrous, wasteful of fuel, and very little used. Watt made it a quick, powerful, and efficient engine, requiring only a fourth as much fuel as before. Under his first patent the engine was still used only as a steam pump; but his later improvements adapted it for driving stationary machinery of all kinds and, save in a few respects, left it essentially what it is to-day. Prior to Watt's inventions, the mines of Great Britain were far from thriving. Many were even on the point of being abandoned, through the difficulty of removing the large quantities of water that collected in them. His improvements made it possible to remove this water at a moderate cost, and this gave many of the mines a new lease of life. The commercial success of his engine was soon fully established.

Watt paid practically no attention to the use of steam for purposes of transportation. In one of his patents he described a steam locomotive; but he offered little encouragement when his chief assistant, Murdoch, who was the inventor of gas lighting, made experiments with steam for locomotion. The notion then was to use a steam carriage on ordinary roads. Railroads had not been thought of. When the idea of using steam on railways began to take shape in the later days of Watt, he refused to encourage the plan. It is said that he even put a clause in a lease of his house, providing that no steam carriage should ever approach it under any pretext whatever.

Besides developing the steam engine, Watt made other inventions, including a press for copying letters. He also probably discovered the chemical composition of water. He died at Heathfield, England, on the nineteenth of August, 1819.

It is denied many men to see the magnitude of their achievements. Moses died on Pisgah, in sight of the "Promised Land," toward which for forty years he had led the children of Israel through the wilderness. Wolfe gave up his life on the plains of Quebec just as the first shouts of the routed French greeted his ears. Columbus was sent home in chains from the America he had discovered, not dreaming he had given to civilization another world. Lincoln's eyes were closed forever at the very dawn of peace, after he had watched in patience through the long and fearful night of the Civil War. It never appeared to James Watt that the idea which flashed into his mind that Sunday afternoon while he was walking in the streets of Glasgow, would transform human life; that like a mighty multiplier it would increase the product of man's power and give him dominion, not over the beasts of the field and the fowls of the air, but over tide and wind, space and time.

Victor Hugo calls locomotives "these giant draft horses of civilization." But man never harnessed these wonderful iron animals until the time of George Stephenson, less than a hundred years ago.

Stephenson was born at Wylam, near Newcastle, England, June 9, 1781. His father was a fireman of a coal-mine engine at that place. In boyhood George was a cowherd, but he spent his spare time making clay models of engines and other objects of a mechanical nature. When he was fourteen years old, he became assistant to his father in firing the engine at the colliery, and three years later he was advanced to engine driving. At this time he could not even read; but, stimulated by a strong desire to know more of the engines made by Boulton and Watt, he began in his eighteenth year to attend a night school. He learned rapidly. During most of this time he studied various experiments with a view to making a successful steam locomotive.

Modern railways had their origin in roads called tramways, which were used for hauling coal from the mines of England to the sea. At first ordinary dirt roads were used for this purpose; but as the heavy traffic wore these roads away, it become the practice to place planks or timbers at the bottoms of the ruts. Afterwards wooden rails were laid straight and parallel on the level surface. The rails were oak scantlings held together with cross timbers of the same material, fastened by means of large oak pins. Later strips of iron were nailed on the tops of the wooden rails. Over these rails, bulky, four-wheeled carts loaded with coal were pulled by horses.

Stephenson made what he called a traveling engine for the tramways leading from the mines where he worked to the sea, nine miles distant. He named his engine "My Lord." On July 25, 1814, he made a successful trial trip with it.

The successful use of steam in hauling coal from the mines led thoughtful persons to consider its use for carrying merchandise and passengers. At this time freight was transported inland by means of canals. This method was slow; thirty-six hours were required for traveling fifty miles. Passengers were conveyed by coaches drawn by horses. In 1821 a railroad for the transportation of merchandise and passengers was opened between Stockton and Darlington in England. The line, including three branches, was thirty-eight miles long. The plan was to use animal power on this road, but George Stephenson secured permission to try on it his steam locomotive.

In September, 1825, the first train passed over the road. It consisted of thirty-four cars weighing, all told, ninety tons. The train was pulled by Stephenson's engine, operated by Stephenson himself, with a signalman riding on horseback in advance. The train moved off at the rate of ten or twelve miles an hour, and on certain parts of the road it reached a speed of fifteen miles per hour. The trial was a complete success.

The road had been built chiefly for the transportation of freight, but from the first passengers insisted on being carried, and in October, 1825, the Company began to run a daily passenger coach called the "Experiment." This coach carried six persons inside and from fifteen to twenty outside. The round trip between Stockton and Darlington was made in two hours. A fare of one shilling was charged, and each passenger was allowed fourteen pounds of baggage free. The Stockton and Darlington was the first railway in the world over which passengers and freight were hauled by steam.

Stephenson was next employed to help construct a railway between Liverpool and Manchester. The most eminent engineers of the day predicted that the road could not be built. But it was built. On the fifteenth of September, 1830, Stephenson made a trial trip over the road with an improved locomotive named the "Rocket." On the trial trip the "Rocket" made twenty-nine miles an hour. This trip firmly proved the possibilities of steam as motive power on railways and started the modern era of railroad building. Other railways were quickly built and soon they radiated from London to nearly every English seaport.

Great Inventions and Discoveries

Подняться наверх