Читать книгу Organic Mechanisms - Xiaoping Sun - Страница 2
Table of Contents
Оглавление1 COVER
4 PREFACE
7 1 FUNDAMENTAL PRINCIPLES 1.1 REACTION MECHANISMS AND THEIR IMPORTANCE 1.2 ELEMENTARY (CONCERTED) AND STEPWISE REACTIONS 1.3 MOLECULARITY 1.4 KINETICS 1.5 THERMODYNAMICS 1.6 THE TRANSITION STATE 1.7 ELECTRONIC EFFECTS AND HAMMETT EQUATION 1.8 THE MOLECULAR ORBITAL THEORY 1.9 ELECTROPHILES/NUCLEOPHILES VERSUS ACIDS/BASES 1.10 ISOTOPE LABELING 1.11 ENZYMES: BIOLOGICAL CATALYSTS 1.12 THE GREEN CHEMISTRY METHODOLOGY REFERENCES
8 2 THE ALIPHATIC C─H BOND FUNCTIONALIZATION 2.1 ALKYL RADICALS: BONDING AND THEIR RELATIVE STABILITY 2.2 RADICAL HALOGENATIONS OF THE C─H BONDS ON SP3‐HYBRIDIZED CARBONS: MECHANISM AND NATURE OF THE TRANSITION STATES 2.3 ENERGETICS OF THE RADICAL HALOGENATIONS OF ALKANES AND THEIR REGIOSELECTIVITY 2.4 KINETICS OF RADICAL HALOGENATIONS OF ALKANES 2.5 RADICAL INITIATORS 2.6 TRANSITION‐METAL‐COMPOUNDS CATALYZED ALKANE C─H BOND ACTIVATION AND FUNCTIONALIZATION 2.7 SUPERACIDS CATALYZED ALKANE C─H BOND ACTIVATION AND FUNCTIONALIZATION 2.8 NITRATION OF THE ALIPHATIC C─H BONDS VIA THE NITRONIUM NO2+ ION 2.9 PHOTOCHEMICAL AND THERMAL C─H BOND ACTIVATION BY THE OXIDATIVE URANYL UO22+(VI) CATION 2.10 ENZYME CATALYZED ALKANE C─H BOND ACTIVATION AND FUNCTIONALIZATION: BIOCHEMICAL METHODS REFERENCES
9 3 FUNCTIONALIZATION OF THE ALKENE C=C BOND BY ELECTROPHILIC ADDITIONS 3.1 MARKOVNIKOV ADDITIONS VIA INTERMEDIATE CARBOCATIONS 3.2 ELECTROPHILIC ADDITION OF HYDROGEN HALIDES TO CONJUGATED DIENES 3.3 NON‐MARKOVNIKOV RADICAL ADDITION 3.4 HYDROBORATION: CONCERTED, NON‐MARKOVNIKOV syn‐ADDITION 3.5 TRANSITION‐METAL CATALYZED HYDROGENATION OF THE ALKENE C=C BOND (syn‐ADDITION) 3.6 HALOGENATION OF THE ALKENE C=C BOND (ANTI‐ADDITION): MECHANISM AND ITS STEREOCHEMISTRY REFERENCES
10 4 FUNCTIONALIZATION OF THE ALKENE C=C BOND BY CYCLOADDITION REACTIONS 4.1 CYCLOADDITION OF THE ALKENE C=C BOND TO FORM THREE‐MEMBERED RINGS 4.2 CYCLOADDITIONS TO FORM FOUR‐MEMBERED RINGS 4.3 DIELS–ALDER CYCLOADDITIONS OF THE ALKENE CC BOND TO FORM SIX‐MEMBERED RINGS 4.4 1,3‐DIPOLAR CYCLOADDITIONS OF THE C=C AND OTHER MULTIPLE BONDS TO FORM FIVE‐MEMBERED RINGS 4.5 OTHER PERICYCLIC REACTIONS 4.6 DIELS–ALDER CYCLOADDITIONS IN WATER: THE GREEN CHEMISTRY METHODS 4.7 BIOLOGICAL APPLICATIONS REFERENCES
11 5 THE AROMATIC C─H BOND FUNCTIONALIZATION AND RELATED REACTIONS 5.1 AROMATIC NITRATION: ALL REACTION INTERMEDIATES AND FULL MECHANISM FOR THE AROMATIC C─H BOND SUBSTITUTION BY NITRONIUM (NO2+) AND RELATED ELECTROPHILES 5.2 MECHANISMS AND SYNTHETIC UTILITY FOR AROMATIC C─H BOND SUBSTITUTIONS BY OTHER RELATED ELECTROPHILES 5.3 THE IRON (III) CATALYZED ELECTROPHILIC AROMATIC C─H BOND SUBSTITUTION 5.4 THE ELECTROPHILIC AROMATIC C─H BOND SUBSTITUTION REACTIONS VIA SN1 and SN2 MECHANISMS 5.5 SUBSTITUENT EFFECTS ON THE ELECTROPHILIC AROMATIC SUBSTITUTION REACTIONS 5.6 ISOMERIZATIONS EFFECTED BY THE ELECTROPHILIC AROMATIC SUBSTITUTION REACTIONS 5.7 ELECTROPHILIC SUBSTITUTION REACTIONS ON THE AROMATIC CARBON─METAL BONDS: MECHANISMS AND SYNTHETIC APPLICATIONS 5.8 NUCLEOPHILIC AROMATIC SUBSTITUTION VIA A BENZYNE (ARYNE) INTERMEDIATE: FUNCTIONAL GROUP TRANSFORMATIONS ON AROMATIC RINGS 5.9 NUCLEOPHILIC AROMATIC SUBSTITUTION VIA AN ANIONIC MEISENHEIMER COMPLEX 5.10 BIOLOGICAL APPLICATIONS OF FUNCTIONALIZED AROMATIC COMPOUNDS PROBLEMS REFERENCES
12 6 NUCLEOPHILIC SUBSTITUTIONS ON SP3‐HYBRIDIZED CARBONS 6.1 NUCLEOPHILIC SUBSTITUTION ON MONO‐FUNCTIONALIZED SP3‐HYBRIDIZED CARBON 6.2 FUNCTIONAL GROUPS WHICH ARE GOOD AND POOR LEAVING GROUPS 6.3 GOOD AND POOR NUCLEOPHILES 6.4 SN2 REACTIONS: KINETICS, MECHANISM, AND STEREOCHEMISTRY 6.5 ANALYSIS OF THE SN2 MECHANISM USING SYMMETRY RULES AND MOLECULAR ORBITAL THEORY 6.6 SN1 REACTIONS: KINETICS, MECHANISM, AND PRODUCT DEVELOPMENT 6.7 COMPETITIONS BETWEEN SN1 AND SN2 REACTIONS 6.8 SOME USEFUL SN1 AND SN2 REACTIONS: MECHANISMS AND SYNTHETIC PERSPECTIVES 6.9 BIOLOGICAL APPLICATIONS OF NUCLEOPHILIC SUBSTITUTION REACTIONS PROBLEMS REFERENCES
13 7 ELIMINATIONS 7.1 E2 ELIMINATION: BIMOLECULAR β‐ELIMINATION OF H/LG AND ITS REGIOCHEMISTRY AND STEREOCHEMISTRY 7.2 ANALYSIS OF THE E2 MECHANISM USING SYMMETRY RULES AND MOLECULAR ORBITAL THEORY 7.3 BASICITY VERSUS NUCLEOPHILICITY FOR VARIOUS ANIONS 7.4 COMPETITION OF E2 AND SN2 REACTIONS 7.5 E1 ELIMINATION: STEPWISE β‐ELIMINATION OF H/LG VIA AN INTERMEDIATE CARBOCATION AND ITS RATE‐LAW 7.6 ENERGY PROFILES FOR E1 REACTIONS 7.7 THE E1 ELIMINATION OF ETHERS 7.8 INTRAMOLECULAR (UNIMOLECULAR) ELIMINATIONS VIA CYCLIC TRANSITION STATES 7.9 MECHANISMS FOR REDUCTIVE ELIMINATION OF LG1/LG2 (TWO FUNCTIONAL GROUPS) ON ADJACENT CARBONS 7.10 THE α‐ELIMINATION GIVING A CARBENE: A MECHANISTIC ANALYSIS USING SYMMETRY RULES AND MOLECULAR ORBITAL THEORY 7.11 E1cb ELIMINATION 7.12 BIOLOGICAL APPLICATIONS: ENZYME‐CATALYZED BIOLOGICAL ELIMINATION REACTIONS REFERENCES
14 8 NUCLEOPHILIC ADDITIONS AND SUBSTITUTIONS ON CARBONYL GROUPS 8.1 NUCLEOPHILIC ADDITIONS AND SUBSTITUTIONS OF CARBONYL COMPOUNDS 8.2 NUCLEOPHILIC ADDITIONS OF ALDEHYDES AND KETONES AND THEIR BIOLOGICAL APPLICATIONS 8.3 BIOLOGICAL HYDRIDE DONORS NAD(P)H AND FADH2 8.4 ACTIVATION OF CARBOXYLIC ACIDS VIA NUCLEOPHILIC SUBSTITUTIONS ON THE CARBONYL CARBONS 8.5 NUCLEOPHILIC SUBSTITUTIONS OF ACYL DERIVATIVES AND THEIR BIOLOGICAL APPLICATIONS 8.6 REDUCTION OF ACYL DERIVATIVES BY HYDRIDE DONORS 8.7 KINETICS OF THE NUCLEOPHILIC ADDITION AND SUBSTITUTION OF ACYL DERIVATIVES PROBLEMS REFERENCES
15 9 REACTIVITY OF THE α‐HYDROGEN TO CARBONYL GROUPS 9.1 FORMATION OF ENOLATES AND THEIR NUCLEOPHILICITY 9.2 ALKYLATION OF CARBONYL COMPOUNDS (ALDEHYDES, KETONES, AND ESTERS) VIA ENOLATES AND HYDRAZONES 9.3 ALDOL REACTIONS 9.4 ACYLATION REACTIONS OF ESTERS VIA ENOLATES: MECHANISM AND SYNTHETIC UTILITY 9.5 BIOLOGICAL APPLICATIONS: ROLES OF ENOLATES IN METABOLIC PROCESSES IN LIVING ORGANISMS REFERENCES
16 10 REARRANGEMENTS 10.1 MAJOR TYPES OF REARRANGEMENTS 10.2 REARRANGEMENT OF CARBOCATIONS: 1,2‐SHIFT 10.3 NEIGHBORING LEAVING GROUP FACILITATED 1,2‐REARRANGEMENT 10.4 CARBENE REARRANGEMENT: 1,2‐REARRANGEMENT OF HYDROGEN FACILITATED BY A LONE PAIR OF ELECTRONS 10.5 CLAISEN REARRANGEMENT 10.6 CLAISEN REARRANGEMENT IN WATER: THE GREEN CHEMISTRY METHODS 10.7 PHOTOCHEMICAL ISOMERIZATION OF ALKENES AND ITS BIOLOGICAL APPLICATIONS 10.8 REARRANGEMENT OF CARBON–NITROGEN–SULFUR CONTAINING HETEROCYCLES PROBLEMS REFERENCES
17 INDEX