Читать книгу Hybridized and Coupled Nanogenerators - Ya Yang - Страница 20
References
Оглавление1 1 Wang, Z.L. and Song, J. (2006). Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312: 242.
2 2 Fan, F., Tian, Z., and Wang, Z.L. (2012). Flexible triboelectric generator! Nano Energy 1: 328.
3 3 Wang, Z.L. (2017). On Maxwell's displacement current for energy and sensors: the origin of nanogenerators. Mater. Today 20: 74.
4 4 Wang, Z.L., Jiang, T., and Xu, L. (2017). Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy 39: 9.
5 5 Wang, Z.L. (2020). On the first principle theory of nanogenerators from Maxwell's equations. Nano Energy 68: 104272.
6 6 Dresselhaus, M.S. and Thomas, I.L. (2001). Alternative energy technologies. Nature 414: 332.
7 7 Xu, C., Wang, X., and Wang, Z.L. (2009). Nanowire structured hybrid cell for concurrently scavenging solar and mechanical energies. J. Am. Chem. Soc. 131: 5866.
8 8 Wu, Y., Wang, X., Yang, Y., and Wang, Z.L. (2015). Hybrid energy cell for harvesting mechanical energy from one motion using two approaches. Nano Energy 11: 162.
9 9 Zhang, K., Wang, S., and Yang, Y. (2017). A one‐structure‐based piezo–tribo–pyro–photoelectric effects coupled nanogenerator for simultaneously scavenging mechanical, thermal, and solar energies. Adv. Energy Mater. 7: 1601852.
10 10 Zhang, K., Wang, X., Yang, Y., and Wang, Z.L. (2015). Hybridized electromagnetic–triboelectric nanogenerator for scavenging biomechanical energy for sustainably powering wearable electronics. ACS Nano 9: 3521.
11 11 Zhong, X., Yang, Y., Wang, X., and Wang, Z.L. (2015). Rotating‐disk‐based hybridized electromagnetic–triboelectric nanogenerator for scavenging biomechanical energy as a mobile power source. Nano Energy 13: 771.
12 12 Wang, X., Wang, S., Yang, Y., and Wang, Z.L. (2015). Hybridized electromagnetic–triboelectric nanogenerator for scavenging air‐flow energy to sustainably power temperature sensors. ACS Nano 9: 4553.
13 13 Quan, T., Wang, X., Wang, Z.L., and Yang, Y. (2015). Hybridized electromagnetic–triboelectric nanogenerator for self‐powered electronic watch. ACS Nano 9: 12301.
14 14 Zhang, K. and Yang, Y. (2016). Linear‐grating hybridized electromagnetic–triboelectric nanogenerator for sustainably powering portable electronics. Nano Res. 9: 974.
15 15 Wang, X., Wang, Z.L., and Yang, Y. (2016). Hybridized nanogenerator for simultaneously scavenging mechanical and thermal energies by electromagnetic–triboelectric–thermoelectric effects. Nano Energy 26: 164.
16 16 Zhang, K., Wang, Z.L., and Yang, Y. (2016). Conductive fabric based stretchable hybridized nanogenerator for scavenging biomechanical energy. ACS Nano 10: 4728.
17 17 Quan, T. and Yang, Y. (2016). Fully enclosed hybridized electromagnetic–triboelectric nanogenerator for scavenging vibration energy. Nano Res. 9: 2226.
18 18 Quan, T. and Yang, Y. (2016). A shared‐electrodes‐based hybridized electromagnetic–triboelectric nanogenerator. ACS Appl. Mater. Interfaces 8: 19573.
19 19 Wang, X. and Yang, Y. (2017). Effective energy storage from a hybridized electromagnetic–triboelectric nanogenerator. Nano Energy 32: 36.
20 20 Salauddin, M., Toyabur, R.M., Maharjan, P. et al. (2019). Design and experimental analysis of a low‐frequency resonant hybridized nanogenerator with a wide bandwidth and high output power density. Nano Energy 66: 104122.
21 21 Rahman, M.T., Salauddin, M., Maharjan, P. et al. (2019). Natural wind‐driven ultra‐compact and highly efficient hybridized nanogenerator for self‐sustained wireless environmental monitoring system. Nano Energy 57: 256.
22 22 Hou, C., Chen, T., Li, Y. et al. (2019). A rotational pendulum based electromagnetic/triboelectric hybrid‐generator for ultra‐low‐frequency vibrations aiming at human motion and blue energy applications. Nano Energy 63: 103871.
23 23 Sun, C., Shi, Q., Hasan, D. et al. (2019). Self‐powered multifunctional monitoring system using hybrid integrated triboelectric nanogenerators and piezoelectric microsensors. Nano Energy 58: 612.
24 24 Xu, C. and Wang, Z.L. (2011). Compact hybrid cell based on a convoluted nanowire structure for harvesting solar and mechanical energy. Adv. Mater. 23: 873.
25 25 Yang, Y., Zhang, H., Liu, Y. et al. (2013). Silicon based hybrid energy cell for self‐powered electrodegradation and personal electronics. ACS Nano 7: 2808.
26 26 Yang, Y., Zhang, H., Chen, J. et al. (2013). Simultaneously harvesting mechanical and chemical energies by a hybrid cell for self‐powered biosensors and personal electronics. Energy Environ. Sci. 6: 1744.
27 27 Yang, Y., Zhang, H., Lin, Z.H. et al. (2013). A hybrid energy cell for self‐powered water splitting. Energy Environ. Sci. 6: 2429.
28 28 Yang, Y., Zhang, H., Lee, S. et al. (2013). Hybrid energy cell for degradation of methyl orange by self‐powered electrocatalytic oxidation. Nano Lett. 13: 803.
29 29 Yang, Y., Zhang, H., Zhu, G. et al. (2013). Flexible hybrid energy cell for simultaneously harvesting thermal, mechanical, and solar energies. ACS Nano 7: 785.
30 30 Wang, S., Wang, X., Wang, Z.L., and Yang, Y. (2016). Efficient scavenging of solar and wind energies in a smart city. ACS Nano 10: 5696.
31 31 Donelan, J.M., Li, Q., Naing, V. et al. (2008). Biomechanical energy harvesting: generating electricity during walking with minimal user effort. Science 319: 807.
32 32 Wang, S., Mu, X., Yang, Y. et al. (2015). Flow‐driven triboelectric generator for directly powering a wireless sensor node. Adv. Mater. 27: 240.
33 33 Chen, B., Yang, Y., and Wang, Z.L. (2017). Scavenging wind energy by triboelectric nanogenerators. Adv. Energy Mater. 8: 1702649.
34 34 Glass, A.M., Von der Linde, D., and Negran, T.J. (1974). Multiphoton photorefractive processes for optical storage in LiNbO3. Appl. Phys. Lett. 25: 233.
35 35 Carnicero, J., Caballero, O., Carrascosa, M., and Cabrera, J.M. (2004). Superlinear photovoltaic currents in LiNbO3: analyses under the two‐center model. Appl. Phys. B 79: 351.
36 36 Arizmendi, L. (2004). Photonic applications of lithium niobate crystals. Phys. Status Solidi A 201: 253.
37 37 Zhang, J., Su, X., Shen, M. et al. (2013). Enlarging photovoltaic effect: combination of classic photoelectric and ferroelectric photovoltaic effects. Sci. Rep. 3: 2109.
38 38 Yang, X., Su, X., Shen, M. et al. (2012). Enhancement of photocurrent in ferroelectric films via the incorporation of narrow bandgap nanoparticles. Adv. Mater. 24: 1202.
39 39 Ichiki, M., Maeda, R., Morikawa, Y. et al. (2004). Photovoltaic effect of lead lanthanum zirconate titanate in a layered film structure design. Appl. Phys. Lett. 84: 395.
40 40 Koch, W.T.H., Munser, R., Ruppel, W., and Würfel, P. (1975). Bulk photovoltaic effect in BaTiO3. Solid State Commun. 17: 847.
41 41 Xing, J., Jin, K.J., Lu, H. et al. (2008). Photovoltaic effects and its oxygen content dependence in BaTiO3−δ/Si heterojunctions. Appl. Phys. Lett. 92: 71113.
42 42 Liu, F., Fina, I., Gutiérrez, D. et al. (2015). Selecting steady and transient photocurrent response in BaTiO3 films. Adv. Electron. Mater. 1: 1500171.
43 43 Yi, H.T., Choi, T., Choi, S.G. et al. (2011). Mechanism of the switchable photovoltaic effect in ferroelectric BiFeO3. Adv. Mater. 23: 3403.
44 44 Bhatnagar, A., Chaudhuri, A.R., Kim, Y.H. et al. (2013). Role of domain walls in the abnormal photovoltaic effect in BiFeO3. Nat. Commun. 4: 2835.
45 45 Yang, S.Y., Seidel, J., Byrnes, S.J. et al. (2010). Above‐bandgap voltages from ferroelectric photovoltaic devices. Nat. Nanotechnol. 5: 143.
46 46 Ma, N., Zhang, K., and Yang, Y. (2017). Photovoltaic–pyroelectric coupled effect induced electricity for self‐powered photodetector system. Adv. Mater. 29: 1703694.
47 47 Wang, S., Wang, Z.L., and Yang, Y. (2016). A one‐structure‐based hybridized nanogenerator for scavenging mechanical and thermal energies by triboelectric–piezoelectric–pyroelectric effects. Adv. Mater. 28: 2881.
48 48 Ji, Y., Zhang, K., and Yang, Y. (2017). A one‐structure‐based multi‐effects coupled nanogenerator for simultaneously scavenging thermal, solar, and mechanical energies. Adv. Sci. 5: 1700622.