Читать книгу Hybridized and Coupled Nanogenerators - Ya Yang - Страница 47

References

Оглавление

1 1 Wiser, R., Jenni, K., Seel, J. et al. (2016). Expert elicitation survey on future wind energy costs. Nat. Energy 1: 16135.

2 2 Mertens, S. (2003). The energy yield of roof mounted wind turbines. Wind Eng. 27: 507.

3 3 Grant, A., Johnstone, C., and Kelly, N. (2008). Urban wind energy conversion: the potential of ducted turbines. Renewable Energy 33: 1157.

4 4 Hameed, Z., Hong, Y., Cho, Y. et al. (2009). Condition monitoring and fault detection of wind turbines and related algorithms: a review. Renewable Sustainable Energy Rev. 13 (1): 1.

5 5 Islam, M., Mekhilef, S., and Saidur, R. (2013). Progress and recent trends of wind energy technology. Renewable Sustainable Energy Rev. 21: 456–468.

6 6 Henriques, J., Da Silva, F.M., Estanqueiro, A., and Gato, L. (2009). Design of a new urban wind turbine airfoil using a pressure‐load inverse method. Renewable Energy 34: 2728.

7 7 Chong, W., Fazlizan, A., Poh, S. et al. (2012). Early development of an innovative building integrated wind, solar and rain water harvester for urban high rise application. Energy Build. 47: 201.

8 8 Hoogwijk, M., de Vries, B., and Turkenburg, W. (2004). Assessment of the global and regional geographical, technical and economic potential of onshore wind energy. Energy Econ. 26: 889.

9 9 Sfetsos, A. (2000). A comparison of various forecasting techniques applied to mean hourly wind speed time series. Renewable Energy 21: 23.

10 10 Seguro, J. and Lambert, T. (2000). Modern estimation of the parameters of the Weibull wind speed distribution for wind energy analysis. J. Wind Eng. Ind. Aerodyn. 85: 75.

11 11 Al‐Bahadly, I. (2009). Building a wind turbine for rural home. Renewable Sustainable Energy Rev. 13: 159.

12 12 Walker, S.L. (2011). Building mounted wind turbines and their suitability for the urban scale – a review of methods of estimating urban wind resource. Energy Build. 43: 1852.

13 13 Ricciardelli, F. and Polimeno, S. (2006). Some characteristics of the wind flow in the lower urban boundary layer. J. Wind Eng. Ind. Aerodyn. 94: 815.

14 14 Schallenberg‐Rodriguez, J. (2013). A methodological review to estimate techno‐economical wind energy production. Renewable Sustainable Energy Rev. 21: 272.

15 15 Herbert, G.J., Iniyan, S., Sreevalsan, E., and Rajapandian, S. (2007). A review of wind energy technologies. Renewable Sustainable Energy Rev. 11: 1117.

16 16 Safari, B. and Gasore, J. (2010). A statistical investigation of wind characteristics and wind energy potential based on the Weibull and Rayleigh models in Rwanda. Renewable Energy 35: 2874.

17 17 Mithraratne, N. (2009). Roof‐top wind turbines for microgeneration in urban houses in New Zealand. Energy Build. 41: 1013.

18 18 Fan, F.‐R., Tian, Z.‐Q., and Wang, Z.L. (2012). Flexible triboelectric generator. Nano Energy 1: 328.

19 19 Wang, S., Lin, L., and Wang, Z.L. (2012). Nanoscale triboelectric‐effect‐enabled energy conversion for sustainably powering portable electronics. Nano Lett. 12: 6339.

20 20 Yang, Y., Zhang, H., Chen, J. et al. (2013). Single‐electrode‐based sliding triboelectric nanogenerator for self‐powered displacement vector sensor system. ACS Nano 7: 7342.

21 21 Niu, S., Liu, Y., Wang, S. et al. (2013). Theory of sliding‐mode triboelectric nanogenerators. Adv. Mater. 25: 6184.

22 22 Wang, S., Lin, L., Xie, Y. et al. (2013). Sliding‐triboelectric nanogenerators based on in‐plane charge‐separation mechanism. Nano Lett. 13: 2226.

23 23 Niu, S., Wang, S., Lin, L. et al. (2013). Theoretical study of contact‐mode triboelectric nanogenerators as an effective power source. Energy Environ. Sci. 6: 3576.

24 24 Liu, Y., Niu, S., and Wang, Z.L. (2015). Theory of tribotronics. Adv. Electron. Mater. 1: 1500124.

25 25 Zhu, G., Peng, B., Chen, J. et al. (2015). Triboelectric nanogenerators as a new energy technology: from fundamentals, devices, to applications. Nano Energy 14: 126.

26 26 Dharmasena, R.D.I.G., Jayawardena, K., Mills, C. et al. (2017). Triboelectric nanogenerators: providing a fundamental framework. Energy Environ. Sci. 10: 1801.

27 27 Wang, Z.L. (2015). Triboelectric nanogenerators as new energy technology and self‐powered sensors–principles, problems and perspectives. Faraday Discuss. 176: 447.

28 28 Ishugah, T., Li, Y., Wang, R., and Kiplagat, J. (2014). Advances in wind energy resource exploitation in urban environment: a review. Renewable Sustainable Energy Rev. 37: 613–626.

29 29 Grant, I., Mo, M., Pan, X. et al. (2000). An experimental and numerical study of the vortex filaments in the wake of an operational, horizontal‐axis, wind turbine. J. Wind Eng. Ind. Aerodyn. 85: 177.

30 30 Ayhan, D. and Sağlam, Ş. (2012). A technical review of building‐mounted wind power systems and a sample simulation model. Renewable Sustainable Energy Rev. 16: 1040.

31 31 Gordeeva, L., Restuccia, G., Cacciola, G., and Aristov, Y.I. (1998). Selective water sorbents for multiple applications, 5. LiBr confined in mesopores of silica gel: sorption properties. Kinet. Catal. 63: 81–88.

32 32 Yang, Y., Zhu, G., Zhang, H. et al. (2013). Triboelectric nanogenerator for harvesting wind energy and as self‐powered wind vector sensor system. ACS Nano 7: 9461.

33 33 Wang, S., Mu, X., Yang, Y. et al. (2015). Flow‐driven triboelectric generator for directly powering a wireless sensor node. Adv. Mater. 27 (2): 240.

34 34 Wang, S., Mu, X., Wang, X. et al. (2015). Elasto‐aerodynamics‐driven triboelectric nanogenerator for scavenging air‐flow energy. ACS Nano 9: 9554.

35 35 Xie, Y., Wang, S., Lin, L. et al. (2013). Rotary triboelectric nanogenerator based on a hybridized mechanism for harvesting wind energy. ACS Nano 7: 7119.

36 36 Zhang, H., Wang, J., Xie, Y. et al. (2016). Self‐powered, wireless, remote meteorologic monitoring based on triboelectric nanogenerator operated by scavenging wind energy. ACS Appl. Mater. Interfaces 8: 32649.

37 37 Bae, J., Lee, J., Kim, S. et al. (2014). Flutter‐driven triboelectrification for harvesting wind energy. Nat. Commun. 5: 4929.

38 38 Ren, X., Fan, H., Wang, C. et al. (2018). Wind energy harvester based on coaxial rotatory freestanding triboelectric nanogenerators for self‐powered water splitting. Nano Energy 50: 562.

39 39 Quan, Z., Han, C.B., Jiang, T., and Wang, Z.L. (2016). Robust thin films‐based triboelectric nanogenerator arrays for harvesting bidirectional wind energy. Adv. Energy Mater. 6: 1501799.

40 40 Wang, J., Ding, W., Pan, L. et al. (2018). Self‐powered wind sensor system for detecting wind speed and direction based on a triboelectric nanogenerator. ACS Nano 12: 3954.

41 41 Zhang, L., Zhang, B., Chen, J. et al. (2016). Lawn structured triboelectric nanogenerators for scavenging sweeping wind energy on rooftops. Adv. Mater. 28: 1650.

42 42 Zhao, Z., Pu, X., Du, C. et al. (2016). Freestanding flag‐type triboelectric nanogenerator for harvesting high‐altitude wind energy from arbitrary directions. ACS Nano 10: 1780.

43 43 Klemm, D., Heublein, B., Fink, H.P., and Bohn, A. (2005). Cellulose: fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. 44: 3358.

44 44 Kalia, S., Dufresne, A., Cherian, B.M. et al. (2011). Cellulose‐based bio‐and nanocomposites: a review. Int. J. Polym. Sci. 2011: 837875.

45 45 Moon, R.J., Martini, A., Nairn, J. et al. (2011). Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40: 3941.

46 46 Siró, I. and Plackett, D. (2010). Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17: 459.

47 47 Klemm, D., Kramer, F., Moritz, S. et al. (2011). Nanocelluloses: a new family of nature‐based materials. Angew. Chem. Int. Ed. 50: 5438.

48 48 Eichhorn, S.J., Dufresne, A., Aranguren, M. et al. (2010). Current international research into cellulose nanofibres and nanocomposites. J. Mater. Sci. 45: 1.

49 49 Hubbe, M.A., Rojas, O.J., and Lucia, L.A. (2015). Green modification of surface characteristics of cellulosic materials at the molecular or nano scale: a review. BioResources 10: 6095.

50 50 Hubbe, M.A. (2006). Bonding between cellulosic fibers in the absence and presence of dry‐strength agents – a review. BioResources 1: 281.

51 51 Chen, B., Yang, N., Jiang, Q. et al. (2018). Transparent triboelectric nanogenerator‐induced high voltage pulsed electric field for a self‐powered handheld printer. Nano Energy 44: 468.

52 52 Kim, H.‐J., Yim, E.‐C., Kim, J.‐H. et al. (2017). Bacterial nano‐cellulose triboelectric nanogenerator. Nano Energy 33: 130.

53 53 Yao, C., Hernandez, A., Yu, Y. et al. (2016). Triboelectric nanogenerators and power‐boards from cellulose nanofibrils and recycled materials. Nano Energy 30: 103.

54 54 Chandrasekhar, A., Alluri, N.R., Saravanakumar, B. et al. (2017). A microcrystalline cellulose ingrained polydimethylsiloxane triboelectric nanogenerator as a self‐powered locomotion detector. J. Mater. Chem. C 5: 1810.

55 55 Peng, J., Zhang, H., Zheng, Q. et al. (2017). A composite generator film impregnated with cellulose nanocrystals for enhanced triboelectric performance. Nanoscale 9: 1428.

56 56 Yao, C., Yin, X., Yu, Y. et al. (2017). Chemically functionalized natural cellulose materials for effective triboelectric nanogenerator development. Adv. Funct. Mater. 27: 1700794.

57 57 Šutka, A., Ruža, J., Järvekülg, M. et al. (2018). Triboelectric nanogenerator based on immersion precipitation derived highly porous ethyl cellulose. J. Electrostat. 92: 1.

58 58 He, X., Zou, H., Geng, Z. et al. (2018). A hierarchically nanostructured cellulose fiber‐based triboelectric nanogenerator for self‐powered healthcare products. Adv. Funct. Mater. 28: 1805540.

59 59 Oh, H., Kwak, S.S., Kim, B. et al. (2019). Highly conductive ferroelectric cellulose composite papers for efficient triboelectric nanogenerators. Adv. Funct. Mater.

60 60 Qian, C., Li, L., Gao, M. et al. (2019). All‐printed 3D hierarchically structured cellulose aerogel based triboelectric nanogenerator for multi‐functional sensors. Nano Energy 63: 103885.

61 61 Zhao, K., Wang, Z.L., and Yang, Y. (2016). Self‐powered wireless smart sensor node enabled by an ultrastable, highly efficient, and superhydrophobic‐surface‐based triboelectric nanogenerator. ACS Nano 10: 9044.

62 62 Dudem, B., Huynh, N.D., Kim, W. et al. (2017). Nanopillar‐array architectured PDMS‐based triboelectric nanogenerator integrated with a windmill model for effective wind energy harvesting. Nano Energy 42: 269.

63 63 Guo, H., Chen, J., Tian, L. et al. (2014). Airflow‐induced triboelectric nanogenerator as a self‐powered sensor for detecting humidity and airflow rate. ACS Appl. Mater. Interfaces 6: 17184.

64 64 Wang, M., Zhang, N., Tang, Y. et al. (2017). Single‐electrode triboelectric nanogenerators based on sponge‐like porous PTFE thin films for mechanical energy harvesting and self‐powered electronics. J. Mater. Chem. A 5: 12252.

65 65 Zhao, P., Soin, N., Prashanthi, K. et al. (2018). Emulsion electrospinning of polytetrafluoroethylene (PTFE) nanofibrous membranes for high‐performance triboelectric nanogenerators. ACS Appl. Mater. Interfaces 10: 5880.

66 66 Kang, H., Buchman, J.T., Rodriguez, R.S. et al. (2018). Stabilization of silver and gold nanoparticles: preservation and improvement of plasmonic functionalities. Chem. Rev. 119: 664.

67 67 Jiang, Q., Chen, B., and Yang, Y. (2018). Wind‐driven triboelectric nanogenerators for scavenging biomechanical energy. ACS Appl. Energy Mater. 1: 4269.

68 68 Cheon, S., Kang, H., Kim, H. et al. (2018). High‐performance triboelectric nanogenerators based on electrospun polyvinylidene fluoride–silver nanowire composite nanofibers. Adv. Funct. Mater. 28: 1703778.

69 69 Jiang, Q., Chen, B., Zhang, K., and Yang, Y. (2017). Ag nanoparticle‐based triboelectric nanogenerator to scavenge wind energy for a self‐charging power unit. ACS Appl. Mater. Interfaces 9: 43716.

70 70 Lee, S., Ko, W., Oh, Y. et al. (2015). Triboelectric energy harvester based on wearable textile platforms employing various surface morphologies. Nano Energy 12: 410.

71 71 Chun, J., Kim, J.W., Jung, W.‐s. et al. (2015). Mesoporous pores impregnated with Au nanoparticles as effective dielectrics for enhancing triboelectric nanogenerator performance in harsh environments. Energy Environ. Sci. 8: 3006.

72 72 Zhang, Z., Chen, Y., Debeli, D.K., and Guo, J.S. (2018). Facile method and novel dielectric material using a nanoparticle‐doped thermoplastic elastomer composite fabric for triboelectric nanogenerator applications. ACS Appl. Mater. Interfaces 10: 13082.

73 73 Taneda, S. (1968). Waving motions of flags. J. Phys. Soc. Jpn. 24: 392.

74 74 Ahmed, A., Hassan, I., Hedaya, M. et al. (2017). Farms of triboelectric nanogenerators for harvesting wind energy: a potential approach towards green energy. Nano Energy 36: 21.

75 75 Liu, X., Zhao, K., and Yang, Y. (2018). Effective polarization of ferroelectric materials by using a triboelectric nanogenerator to scavenge wind energy. Nano Energy 53: 622.

76 76 Chen, S., Gao, C., Tang, W. et al. (2015). Self‐powered cleaning of air pollution by wind driven triboelectric nanogenerator. Nano Energy 14: 217.

77 77 Zhao, X., Chen, B., Wei, G. et al. (2019). Polyimide/graphene nanocomposite foam‐based wind‐driven triboelectric nanogenerator for self‐powered pressure sensor. Adv. Mater. Technol. 4: 1800723.

78 78 Chen, B., Yang, Y., and Wang, Z.L. (2018). Scavenging wind energy by triboelectric nanogenerators. Adv. Energy Mater. 8: 1702649.

Hybridized and Coupled Nanogenerators

Подняться наверх