Читать книгу Computational Methods in Organometallic Catalysis - Yu Lan - Страница 19
References
Оглавление1 1 Olson, G.B. (2000). Designing a new material world. Science 288 (5468): 993–998.
2 2 Collins, T. (2001). Toward sustainable chemistry. Science 291 (5501): 48–49.
3 3 Feng, S. and Chien, S. (2003). Chemotherapeutic engineering: application and further development of chemical engineering principles for chemotherapy of cancer and other diseases. Chemical Engineering Science 58: 4087–4114.
4 4 Thuronyi, B.W. and Chang, M.C.Y. (2015). Synthetic biology approaches to fluorinated polyketides. Accounts of Chemical Research 48: 584–592.
5 5 Xu, L., Zhang, S., Li, P. et al. (2015). Boron‐selective reactions as powerful tools for modular synthesis of diverse complex molecules. Chemical Society Reviews 44: 8848–8858.
6 6 Barboiu, M. and Gilles, A. (2013). From natural to bioassisted and biomimetic artificial water channel systems. Accounts of Chemical Research 46: 2814–2823.
7 7 Patel, M., Saunthwal, R.K., Verma, A.K. et al. (2017). Base‐mediated hydroamination of alkynes. Accounts of Chemical Research 50: 240–254.
8 8 Golder, M.R. and Jasti, R. (2015). Syntheses of the smallest carbon nanohoops and the emergence of unique physical phenomena. Accounts of Chemical Research 48: 557–566.
9 9 Kolb, H.C., Finn, M.G., Sharpless, K.B. et al. (2001). Click chemistry: diverse chemical function from a few good reactions. Angewandte Chemie International Edition 40: 2004–2021.
10 10 Mosesa, J.E. and Moorhousea, A.D. (2007). The growing applications of click chemistry. Chemical Society Reviews 36: 1249–1262.
11 11 Devaraj, N.D. and Weissleder, R. (2011). Biomedical applications of tetrazine cycloadditions. Accounts of Chemical Research 44: 816–827.
12 12 Hu, R., Leung, N.L.C., Zhong, B. et al. (2014). AIE macromolecules: syntheses, structures and functionalities. Chemical Society Reviews 43: 4494–4562.
13 13 Luo, Z., Yuan, X., Yu, Y. et al. (2012). From aggregation‐induced emission of Au(I)–thiolate complexes to ultrabright Au(0)@Au(I)–thiolate core–shell nanoclusters. Journal of the American Chemistry Society 134: 16662–16670.
14 14 Dreyer, D.R., Park, S., Bielawski, C.W. et al. (2010). The chemistry of graphene oxide. Chemical Society Reviews 1: 228–240.
15 15 Zou, X. and Zhang, Y. (2015). Noble metal‐free hydrogen evolution catalysts for water splitting. Chemical Society Reviews 44: 5148–5158.
16 16 Lee, Y.H., Zhang, X.Q., Zhang, W. et al. (2012). Synthesis of large‐area MoS2 atomic layers with chemical vapor deposition. Advanced Materials 24: 2320–2325.
17 17 König, H.M. and Kilbinger, A.F. (2007). Learning from nature: β‐sheet‐mimicking copolymers get organized. Angewandte Chemie International Edition 46: 8334–8340.
18 18 Biernacki, J.J., Bullard, J.W., Sant, G. et al. (2017). Cements in the 21st century: challenges, perspectives, and opportunities. Journal of the American Chemistry Society 100 (7): 2746–2773.
19 19 Long, N.J. and Williams, C.K. (2003). Metal alkynyl sigma complexes: synthesis and materials. Angewandte Chemie International Edition 42: 2586–2617.
20 20 Palacci, J., Sacanna, S., and Steinberg, A.P. (2013). Living crystals of light‐activated colloidal surfers. Science 339: 6122.
21 21 Lutolf, M.P. and Hubbell, J.A. (2005). Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nature Biotechnology 23: 47–55.
22 22 James, S.L. (2003). Metal–organic frameworks. Chemical Society Reviews 32: 276–288.
23 23 Hollister, S.J. (2005). Porous scaffold design for tissue engineering. Nature Materials 4: 518–524.
24 24 Hoyle, C.E. and Bowman, C.N. (2010). Thiol–ene click chemistry. Angewandte Chemie International Edition 49: 1540–1573.
25 25 Tan, C., Cao, X., and Wu, X. (2017). Recent advances in ultrathin two‐dimensional nanomaterials. Chemical Reviews 117: 6225–6331.
26 26 Larcher, D. and Tarascon, J.M. (2015). Towards greener and more sustainable batteries for electrical energy storage. Nature Chemistry 7: 19–29.
27 27 Ghidiu, M., Lukatskaya, M.R., Zhao, M.Q. et al. (2014). Conductive two‐dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516: 78.
28 28 Cheng, F., Shen, J., Peng, B. et al. (2011). Rapid room‐temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts. Nature Chemistry 3: 79–84.
29 29 Duncan, R. (2003). The dawning era of polymer therapeutics. Nature Reviews Drug Discovery 2: 347–360.
30 30 Cho, S.H., Kim, J.Y., Kwak, J. et al. (2011). Recent advances in the transition metal‐catalyzed twofold oxidative C—H bond activation strategy for C—C and C—N bond formation. Chemical Society Reviews 40: 5038–5083.
31 31 Seregina, I.V. and Gevorgyan, V. (2007). Direct transition metal‐catalyzed functionalization of heteroaromatic compounds. Chemical Society Reviews 36: 1173–1193.
32 32 Fischbach, M.A. and Walsh, C.T. (2009). Antibiotics for emerging pathogens. Science 325: 1089–1093.
33 33 Shimizu, M. and Hiyama, T. (2005). Modern synthetic methods for fluorine‐substituted target molecules. Angewandte Chemie International Edition 44: 214–231.
34 34 Sun, J.Y., Zhao, X., Illeperuma, W.R.K. et al. (2012). Highly stretchable and tough hydrogels. Nature 489: 133–136.
35 35 Nugent, P., Belmabkhout, Y., Burd, S.D. et al. (2013). Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature 495: 80–84.
36 36 Cortright, R.D., Davda, R.R., Dumesic, J.A. et al. (2002). Hydrogen from catalytic reforming of biomass‐derived hydrocarbons in liquid water. Nature 418: 964–967.
37 37 Hu, B., Wang, K., and Wu, L. (2010). Engineering carbon materials from the hydrothermal carbonization process of biomass. Advanced Materials 22: 813–828.
38 38 Hirst, A.R., Escuder, B., Miravet, J.F. et al. (2008). High‐tech applications of self‐assembling supramolecular nanostructured gel‐phase materials: from regenerative medicine to electronic devices. Angewandte Chemie International Edition 47: 8002–8018.
39 39 Li, L., Wu, G., Yang, G. et al. (2013). Focusing on luminescent graphene quantum dots: current status and future perspectives. Nanoscale 5: 4015–4039.
40 40 Katz, H.E., Bao, Z., Gilat, S. et al. (2001). Synthetic chemistry for ultrapure, processable, and high‐mobility organic transistor semiconductors. Accounts of Chemical Research 34: 359–369.
41 41 Pron, A. and Rannou, P. (2002). Processible conjugated polymers: from organic semiconductors to organic metals and superconductors. Progress in Polymer Science 27: 135–190.
42 42 Furukawa, H., Cordova, K.E., O'Keeffe, M. et al. (2013). The chemistry and applications of metal–organic frameworks. Science 341: 974.
43 43 Burke, M.D. and Schreiber, S.L. (2004). A planning strategy for diversity‐oriented synthesis. Angewandte Chemie International Edition 43: 46–58.
44 44 Jiang, H., Taranekar, P., Reynolds, J.R. et al. (2009). Conjugated polyelectrolytes: synthesis, photophysics, and applications. Angewandte Chemie International Edition 48: 4300–4316.
45 45 Salonen, M.S.L.M., Ellermann, M., Diederich, F. et al. (2011). Aromatic rings in chemical and biological recognition: energetics and structures. Angewandte Chemie International Edition 50: 4808–4842.
46 46 Khodagholy, D., Rivnay, J., Sessolo, M. et al. (2013). High transconductance organic electrochemical transistors. Nature Communication 2013 (4): 2133.
47 47 Yu, J., Shi, F., Gong, L.Z. et al. (2011). Bronsted‐acid‐catalyzed asymmetric multicomponent reactions for the facile synthesis of highly enantioenriched structurally diverse nitrogenous heterocycles. Accounts of Chemical Research 2011 (44): 1156–1171.
48 48 Moonen, K., Laureyn, I., Stevens, C.V. et al. (2014). Synthetic methods for azaheterocyclic phosphonates and their biological activity. Chemical Reviews 104: 6177–6215.
49 49 Bartoli, G., Bencivennia, G., Dalpozzob, R. et al. (2010). Organocatalytic strategies for the asymmetric functionalization of indoles. Chemical Society Reviews 39: 4449–4465.
50 50 Qin, Y., Zhu, L., Luo, S. et al. (2017). Organocatalysis in inert C—H bond functionalization. Chemical Reviews 107: 9433–9520.
51 51 Shi, W., Liu, C., Lei, A. et al. (2011). Transition‐metal catalyzed oxidative cross‐coupling reactions to form C—C bonds involving organometallic reagents as nucleophiles. Chemical Society Reviews 2011 (40): 2761.
52 52 Liu, C., Zhang, H., Shi, W. et al. (2011). Bond formations between two nucleophiles: transition metal catalyzed oxidative cross‐coupling reactions. Chemical Reviews 2011 (111): 1780.
53 53 Lei, A., Shi, W., Liu, C. et al. (2016). Oxidative Cross‐Coupling Reactions. Wiley‐VCH.
54 54 Twilton, J., Le, C., Zhang, P. et al. (2017). The merger of transition metal and photocatalysis. Nature Reviews Chemistry 1: 0052.
55 55 Mayer, J.M. (2011). Understanding hydrogen atom transfer: from bond strengths to Marcus theory. Accounts of Chemical Research 44: 36–46.
56 56 Soleilhavoup, M. and Bertrand, G. (2015). Cyclic (alkyl)(amino)carbenes (CAACs): stable carbenes on the rise. Accounts of Chemical Research 48: 256–266.
57 57 Tellis, J.C., Kelly, C.B., and Primer, D.N. (2016). Single‐electron transmetalation via photoredox/nickel dual catalysis: unlocking a new paradigm for sp3–sp2 cross‐coupling. Accounts of Chemical Research 49 (7): 1429–1439.
58 58 Houk, K.N. (1975). Frontier molecular‐orbital theory of cycloaddition reactions. Accounts of Chemical Research 8: 361–369.
59 59 Mcleod, D., Thogersen, M.K., Jessen, N.I. et al. (2019). Expanding the frontiers of higher‐order cycloadditions. Accounts of Chemical Research 52: 3488–3501.
60 60 Li, J., Liu, T., Chen, Y. et al. (2012). Aminocatalytic asymmetric Diels–Alder reactions via HOMO activation. Accounts of Chemical Research 45 (9): 1491–1500.
61 61 Afewerki, S. and Cordova, A. (2016). Combinations of aminocatalysts and metal catalysts: a powerful cooperative approach in selective organic synthesis. Chemical Reviews 116 (22): 13512–13570.
62 62 Zeise, W.C. (1831). Von der Wirkung zwischen Platinchlorid und Alkohol, und von den dabei entstehenden neuen Substanzen. Annual Physical Chemistry (in German) 97 (4): 497–541.
63 63 Didier, A. (2007). History of organometallic chemistry. In: Organometallic Chemistry and Catalysis, 5–20. Springer‐Verlag Berlin Heidelberg.
64 64 Frankland, E. (1849). Notiz über eine neue Reihe organischer Körper, welche Metalle, Phosphor u. s. w. enthalten. Liebigs Annalen der Chemie und Pharmacie 71 (2): 213–216.
65 65 Löwig, C. (1853). Ueber Methplumbäthyl. Annalen der Chemie und Pharmacie 88: 318–322.
66 66 Hallwachs, W. and Schafarik, A. (1859). Ueber die Verbindungen der Erdmetalle mit organischen Radicalen. Liebigs Annalen der Chemie und Pharmacie 109: 207.
67 67 Grignard, V. (1900). Sur quelques nouvelles combinaisons organométalliques du magnèsium et leur application à des synthèses d'alcools et d'hydrocarbures. Comptes Rendus 130: 1322.
68 68 Frankland, E. (1859). Researches on Organo‐metallic Bodies. Philosophical Transactions of the Royal Society of London 149: 401–415.
69 69 Mond, L., Langer, C., and Quincke, F. (1890). Action of carbon monoxide on nickel. Journal of the Chemical Society, Faraday Transactions 57: 749–753.
70 70 Mond, L. and Langer, C. (1891). On iron carbonyls. Journal of the Chemical Society, Faraday Transactions 59: 1090–1093.
71 71 Werner, A. (1893). Beitrag zur Konstitution anorganischer Verbindungen. Anorganic Chemistry 3: 267.
72 72 Hein, F. (1919). Notiz über Chromorganoverbindungen. Chemische Berichte 52: 195.
73 73 Kealy, T.J. and Pauson, P.L. (1951). A new type of organo‐iron compound. Nature 168 (4285): 1039–1040.
74 74 Fischer, E.O. and Maasböl, A. (1964). On the existence of a tungsten carbonyl carbene complex. Angewandte Chemie (International Edition in English) 3 (8): 580–581.
75 75 Ziegler, K., Holzkamp, E., Breil, H. et al. (1955). Das Mülheimer Normaldruck‐Polyäthylen‐Verfahren. Angewandte Chemie (International Edition in English) 67: 541–547.
76 76 Natta, G. (1955). Une nouvelle classe de polymeres d'α‐olefines ayant une régularité de structure exceptionnelle. Journal of Polymer Science 16 (82): 143–154.
77 77 Smidt, J. and Hafner, W. (1959). Eine Reaktion von Palladiumchlorid mit Allylalkohol. Angewandte Chemie (International Edition in English) 71: 284.
78 78 Ruddick, J.D. and Shaw, B.L. (1969). Transition metal–carbon bonds. Part XXI. Methyl derivatives of platinum(II) and platinum(IV) containing dimethylphenylarsine as ligand. Journal of the American Chemical Society 123 (13): 2964–2969.
79 79 Wilkinson, G. (1974). The long search for stable transition metal alkyls. Science 185: 109–112.
80 80 Heck, R.F. and Nolley, J.P. (1972). Palladium‐catalyzed vinylic hydrogen substitution reactions with aryl, benzyl, and styryl halides. The Journal of Organic Chemistry 37 (14): 2320–2322.
81 81 Tamao, K., Sumitani, K., and Kumada, M. (1972). Selective carbon–carbon bond formation by cross‐coupling of Grignard reagents with organic halides. Catalysis by nickel–phosphine complexes. Journal of the American Chemical Society 94 (12): 4374–4376.
82 82 Miyaura, N., Yamada, K., and Suzuki, A. (1979). A new stereospecific cross‐coupling by the palladium‐catalyzed reaction of 1‐alkenylboranes with 1‐alkenyl or 1‐alkynyl halides. Tetrahedron Letters 20 (36): 3437–3440.
83 83 King, A.O., Okukado, N., and Negishi, E.‐i. (1977). Highly general stereo‐, regio‐, and chemo‐selective synthesis of terminal and internal conjugated enynes by the Pd‐catalysed reaction of alkynylzinc reagents with alkenyl halides. Journal of the Chemical Society, Chemical Communications 19: 683.
84 84 Milstein, D. and Stille, J.K. (1978). A general, selective, and facile method for ketone synthesis from acid chlorides and organotin compounds catalyzed by palladium. Journal of the American Chemical Society 100: 3636–3638.
85 85 Sonogashira, K., Tohda, Y., and Hagihara, N. (1975). A convenient synthesis of acetylenes: catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines. Tetrahedron Letters 16 (50): 4467–4470.
86 86 Vineyard, B.D., Knowles, W.S., Sabacky, M.J. et al. (1977). Asymmetric hydrogenation. Rhodium chiral bisphosphine catalyst. Journal of the American Chemical Society 99 (18): 5946–5952.
87 87 Qi, X., Liu, S., and Lan, Y. (2016). Computational studies on an aminomethylation precursor: (Xantphos)Pd(CH2NBn2)+. Organometallics 35: 1582–1585.
88 88 Li, Y., Liu, S., Qi, Z. et al. (2015). The mechanism of N—O bond cleavage in rhodium‐catalyzed C—H bond functionalization of quinoline N‐oxides with alkynes: a computational study. Chemistry – A European Journal 21: 10131–10137.