Читать книгу Computational Methods in Organometallic Catalysis - Yu Lan - Страница 47
References
Оглавление1 1 Cramer, C.J. (2002). Essential of Computational Chemistry: Theories and Models, 2nd Edition. New York: John Wiley & Sons.
2 2 Schrödinger, E. (1926). Quantisierung als Eigenwertproblem. Annals of Physics 384: 361–376.
3 3 Szabo, A. and Ostlund, N.S. (1996). Modern Quantum Chemistry, Introduction to Advanced Electronic Structure Theory. New York: Dover Publications.
4 4 Born, M. and Oppenheimer, R. (1927). Zur Quantentheorie der Molekeln. Annals of Physics 389: 457–484.
5 5 Hartree, D.R. (1928). The wave mechanics of an atom with a non‐Coulomb central field. Part I. Theory and methods. Mathematical Proceedings of the Cambridge Philosophical Society 24: 89.
6 6 Fock, V. (1930). Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems. Zeitschrift für Physik 61: 126.
7 7 Clark, T. and Koch, R. (1999). Linear combination of atomic orbitals. In: The Chemist's Electronic Book of Orbitals. Berlin, Heidelberg: Springer.
8 8 Roothaan, C.C.J. (1951). New developments in molecular orbital theory. Reviews of Modern Physics 23: 69.
9 9 Foresman, J.B., Head‐Gordon, M., Pople, J.A. et al. (1992). Toward a systematic molecular orbital theory for excited states. Journal of Chemical Physics 96 (1): 135–149.
10 10 Bartlett, R.J. and Purvis, G.D. (1978). Many‐body perturbation‐theory, coupled‐pair many‐electron theory, and importance of quadruple excitations for correlation problem. International Journal of Quantum Chemistry 14: 561–581.
11 11 Møller, C. and Plesset, M.S. (1934). Note on an approximation treatment for many‐electron systems. Physical Review 46: 618–622.
12 12 Pople, J.A., Binkley, J.S., Seeger, R. et al. (1976). Theoretical models incorporating electron correlation. International Journal of Quantum ChemistrySupply 10: 1–19.
13 13 Pople, J.A., Seeger, R., Krishnan, R. et al. (1977). Variational configuration interaction methods and comparison with perturbation theory. International Journal of Quantum Chemistry 12 (Suppl 11): 149–163.
14 14 Head‐Gordon, M., Pople, J.A., Frisch, M.J. et al. (1988). MP2 energy evaluation by direct methods. Chemical Physics Letters 153: 503–506.
15 15 Raghavachari, K. and Pople, J.A. (1978). Approximate 4th‐order perturbation‐theory of electron correlation energy. International Journal of Quantum Chemistry 14: 91–100.
16 16 Pople, J.A., Head‐Gordon, M., and Raghavachari, K. (1987). Quadratic configuration interaction – a general technique for determining electron correlation energies. Journal of Chemical Physics 87: 5968–5975.
17 17 Curtiss, L.A., Raghavachari, K., Redfern, P.C.V. et al. (1998). Gaussian‐3 (G3) theory for molecules containing first and second‐row atoms. Journal of Chemical Physics 109: 7764–7776.
18 18 Nyden, M.R. and Petersson, G.A. (1981). Complete basis set correlation energies. I. The asymptotic convergence of pair natural orbital expansions. Journal of Chemical Physics 75: 1843–1862.
19 19 Petersson, G.A., Bennett, A., Tensfeldt, T.G. et al. (1988). A complete basis set model chemistry. I. The total energies of closed‐shell atoms and hydrides of the first‐row atoms. Journal of Chemical Physics 89: 2193–2218.
20 20 Petersson, G.A. and Al‐Laham, M.A. (1991). A complete basis set model chemistry. II. Open‐shell systems and the total energies of the first‐row atoms. Journal of Chemical Physics 94: 6081–6090.
21 21 Martin, J.M.L. and Oliveira, G.de. (1999). Towards standard methods for benchmark quality ab initio thermochemistry – W1 and W2 theory. Journal of Chemical Physics 111: 1843–1856.
22 22 Parthiban, S. and Martin, J.M.L. (2001). Assessment of W1 and W2 theories for the computation of electron affinities, ionization potentials, heats of formation, and proton affinities. Journal of Chemical Physics 114: 6014–6029.
23 23 Raghavachari, K. and Pople, J.A. (1981). Calculation of one‐electron properties using limited configuration‐interaction techniques. International Journal of Quantum Chemistry 20: 67–71.
24 24 Gauss, J. and Cremer, D. (1988). Analytical evaluation of energy gradients in quadratic configuration‐interaction theory. Chemical Physics Letters 150: 280–286.
25 25 Salter, E.A., Trucks, G.W., Bartlett, R.J. et al. (1989). Analytic energy derivatives in many‐body methods. I. First derivatives. Journal of Chemical Physics 90: 1752–1766.
26 26 Cížek, J. (1969). Correlation and effects in atoms molecules. Advances in Chemical Physics 14: 35.
27 27 Scuseria, G.E. and Schaefer, H.F. III (1989). Is coupled cluster singles and doubles (CCSD) more computationally intensive than quadratic configuration‐interaction (QCISD)? Journal of Chemical Physics 90: 3700–3703.
28 28 Purvis, G.D. III and Bartlett, R.J. (1982). A full coupled‐cluster singles and doubles model – the inclusion of disconnected triples. Journal of Chemical Physics 76: 1910–1918.
29 29 Scuseria, G.E., Janssen, C.L., and Schaefer, H.F. III (1988). An efficient reformulation of the closed‐shell coupled cluster single and double excitation (CCSD) equations. Journal of Chemical Physics 89: 7382–7387.
30 30 Watts, J.D., Gauss, J., and Bartlett, R.J. (1993). Coupled‐cluster methods with noniterative triple excitations for restricted open‐shell Hartree–Fock and other general single determinant reference functions. Energies and analytical gradients. Journal of Chemical Physics 98: 8718.
31 31 Strutt, J.W. and Rayleigh, L. (1894). Theory of Sound, 2e. London: Macmillan.
32 32 Pople, J.A., Head‐Gordon, M.D., Fox, J.K. et al. (1989). Gaussian‐1 theory: a general procedure for prediction of molecular energies. Journal of Chemical Physics 90: 5622–5629.
33 33 Curtiss, L.A., Raghavachari, K.G., Trucks, W. et al. (1991). Gaussian‐2 theory for molecular energies of first‐ and second‐row compounds. Journal of Chemical Physics 94: 7221–7230.
34 34 Curtiss, L.A., Redfern, P.C., Raghavachari, K. et al. (2007). Gaussian‐4 theory. Journal of Chemical Physics 126: 084108.
35 35 Ochterski, J.W., Petersson, G.A., Montgomery, J.A. et al. (1996). A complete basis set model chemistry. V. Extensions to six or more heavy atoms. Journal of Chemical Physics 104: 2598–2619.
36 36 Hohenberg, P. and Kohn, W. (1964). Inhomogeneous electron gas. Physical Review 136: B864–B871.
37 37 Kohn, W. and Sham, L.J. (1965). Self‐consistent equations including exchange and correlation effects. Physical Review 140: A1133–A1138.
38 38 Slater, J.C. (1974). The Self‐Consistent Field for Molecular and Solids, Quantum Theory of Molecular and Solids, vol. 4. New York: McGraw‐Hill.
39 39 Perdew, J.P. and Schmidt, K. (2001). Jacob's ladder of density functional approximations for the exchange‐correlation energy. AIP Conference Proceedings 577: 1–20.
40 40 Perdew, J.P., Ruzsinszky, A., Constantin, L.A. et al. (2009). Some fundamental issues in ground‐state density functional theory: a guide for the perplexed. Journal of Chemical Theory and Computation 5 (4): 902–908.
41 41 Becke, A.D. (1988). Density‐functional exchange‐energy approximation with correct asymptotic‐behavior. Physical Review A 38: 3098–3100.
42 42 Lee, C., Yang, W., Parr, R.G. et al. (1988). Development of the Colle–Salvetti correlation‐energy formula into a functional of the electron density. Physical Review B 37: 785–789.
43 43 Perdew, J.P., Burke, K., Ernzerhof, M. et al. (1996). Generalized gradient approximation made simple. Physical Review Letters 77: 3865–3868.
44 44 Perdew, J.P. (1986). Density‐functional approximation for the correlation energy of the inhomogeneous electron gas. Physical Review B 33: 8822–8824.
45 45 Zhao, Y. and Truhlar, D.G. (2006). A new local density functional for main‐group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. Journal of Chemical Physics 125: 194101–194118.
46 46 Tao, J.M., Perdew, J.P., Staroverov, V.N. et al. (2003). Climbing the density functional ladder: nonempirical meta‐generalized gradient approximation designed for molecules and solids. Physical Review Letters 91: 146401.
47 47 Van Voorhis, T. and Scuseria, G.E. (1998). A never form for the exchange‐correlation energy functional. Journal of Chemical Physics 109: 400–410.
48 48 Becke, A.D. (1993). Density‐functional thermochemistry. III. The role of exact exchange. Journal of Chemical Physics 98: 5648–5652.
49 49 Becke, A.D. (1997). Density‐functional thermochemistry. V. Systematic optimization of exchange‐correlation functionals. Journal of Chemical Physics 107: 8554–8560.
50 50 Cohen, A.J. and Handy, N.C. (2001). Dynamic correlation. Molecular Physics 99: 607–615.
51 51 Adamo, C. and Barone, V. (1999). Toward reliable density functional methods without adjustable parameters: the PBE0 model. Journal of Chemical Physics 110: 6158–6169.
52 52 Adamo, C. and Barone, V. (1998). Exchange functionals with improved long‐range behavior and adiabatic connection methods without adjustable parameters: the mPW and mPW1PW models. Journal of Chemical Physics 108: 664–675.
53 53 Xu, X. and Goddard, W.A. (2004). The X3LYP extended density functional for accurate descriptions of nonbond interactions, spin states, and thermochemical properties. Proceedings of the National Academy of Sciences of the United States of America 101: 2673–2677.
54 54 Zhao, Y., Schultz, N.E., Truhlar, D.G. et al. (2005). Exchange‐correlation functional with broad accuracy for metallic and nonmetallic compounds, kinetics, and noncovalent interactions. Journal of Chemical Physics 123: 161103.
55 55 Zhao, Y. and Truhlar, D.G. (2008). The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06‐class functionals and 12 other functionals. Theoretical Chemistry Accounts 120: 215–241.
56 56 Zhao, Y. and Truhlar, D.G. (2006). Comparative DFT study of van der Waals complexes: rare‐gas dimers, alkaline‐earth dimers, zinc dimer, and zinc‐rare‐gas dimers. Journal of Physical Chemistry 110: 5121–5129.
57 57 Zhao, Y. and Truhlar, D.G. (2006). Density functional for spectroscopy: no long‐range self‐interaction error, good performance for Rydberg and charge‐transfer states, and better performance on average than B3LYP for ground states. Journal of Physical Chemistry A 110: 13126–13130.
58 58 Henderson, T.M., Izmaylov, A.F., Scalmani, G. et al. (2009). Can short‐range hybrids describe long‐range‐dependent properties? Journal of Chemical Physics 131: 044108.
59 59 Grimme, S. (2006). Semiempirical hybrid density functional with perturbative second‐order correlation. Journal of Chemical Physics 124: 034108.
60 60 Schwabe, T. and Grimme, S. (2006). Towards chemical accuracy for the thermodynamics of large molecules: new hybrid density functionals including non‐local correlation effects. Physical Chemistry Chemical Physics 8: 4398.
61 61 Manna, D., Kesharwani, M.K., Sylvetsky, N. et al. (2017). Conventional and explicitly correlated ab initio benchmark study on water clusters: revision of the BEGDB and WATER27 data sets. Journal of Chemical Theory and Computation 13: 3136–3152.
62 62 Bühl, M., Reimann, C., Pantazis, D.A. et al. (2008). Geometries of third‐row transition‐metal complexes from density‐functional theory. Journal of Chemical Theory and Computation 4: 1449–1459.
63 63 Kesharwani, M.K., Karton, A., Martin, J.M.L. et al. (2016). Benchmark ab initio conformational energies for the proteinogenic amino acids through explicitly correlated methods. Assessment of density functional methods. Journal of Chemical Theory and Computation 12: 444–454.
64 64 Theresa, S., Sanhueza, I.A., Kalvet, I. et al. (2015). Computational studies of synthetically relevant homogeneous organometallic catalysis involving Ni, Pd, Ir, and Rh: an overview of commonly employed DFT methods and mechanistic insights. Chemical Reviews 115: 9532–9586.
65 65 Grimme, S., Antony, J., Ehrlich, S. et al. (2010). A consistent and accurate ab initio parameterization of density functional dispersion correction (DFT‐D) for the 94 elements H‐Pu. Journal of Chemical Physics 132: 154104.
66 66 Hehre, W.J., Stewart, R.F., Pople, J.A. et al. (1969). Self‐consistent molecular orbital methods. 1. Use of Gaussian expansions of Slater‐type atomic orbitals. Journal of Chemical Physics 51: 2657–2664.
67 67 Collins, J.B., von Schleyer, P.R., Binkley, J.S. et al. (1976). Self‐consistent molecular orbital methods. 17. Geometries and binding energies of second‐row molecules. A comparison of three basis sets. Journal of Chemical Physics 64: 5142–5151.
68 68 Ditchfield, R., Hehre, W.J., Pople, J.A. et al. (1971). Self‐consistent molecular orbital methods. 9. Extended Gaussian‐type basis for molecular‐orbital studies of organic molecules. Journal of Chemical Physics 54: 724.
69 69 Rassolov, V.A., Ratner, M.A., Pople, J.A. et al. (2001). 6‐31G* basis set for third‐row atoms. Journal of Computational Chemistry 22: 976–984.
70 70 Binkley, J.S., Pople, J.A., Hehre, W.J. et al. (1980). Self‐consistent molecular orbital methods. 21. Small split‐valence basis sets for first‐row elements. Journal of the American Chemical Society 102: 939–947.
71 71 Wachters, A.J.H. (1970). Gaussian basis set for molecular wavefunctions containing third‐row atoms. Journal of Chemical Physics 52: 1033.
72 72 McLean, A.D. and Chandler, G.S. (1980). Contracted Gaussian‐basis sets for molecular calculations. 1. 2nd row atoms, Z = 11–18. Journal of Chemical Physics 72: 5639–5648.
73 73 Dunning, T.H. (1989). Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. Journal of Chemical Physics 90: 1007–1023.
74 74 Kendall, R.A., Dunning, T.H., Harrison, R.J. et al. (1992). Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions. Journal of Chemical Physics 96: 6796–6806.
75 75 Woon, D.E. and Dunning, T.H. (1993). Gaussian‐basis sets for use in correlated molecular calculations. 3. The atoms aluminum through argon. Journal of Chemical Physics 98: 1358–1371.
76 76 Davidson, E.R. (1996). Comment on ‘comment on Dunning’s correlation‐consistent basis sets. Chemical Physics Letters 260: 514–518.
77 77 Fuentealba, P., Preuss, H., Stoll, H. et al. (1982). A proper account of core‐polarization with pseudopotentials – single valence‐electron alkali compounds. Chemical Physics Letters 89: 418–422.
78 78 Wadt, W.R. and Hay, P.J. (1985). Ab initio effective core potentials for molecular calculations – potentials for main group elements Na to Bi. Journal of Chemical Physics 82: 284–298.
79 79 Weigend, F. and Ahlrichs, R. (2005). Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Physical Chemistry Chemical Physics 7: 3297–3305.
80 80 Hay, P.J. and Wadt, W.R. (1985). Ab initio effective core potentials for molecular calculations – potentials for the transition‐metal atoms Sc to Hg. Journal of Chemical Physics 82: 270–283.
81 81 Schwerdtfeger, P., Dolg, M., Schwarz, W.H.E. et al. (1989). Relativistic effects in gold chemistry. 1. Diatomic gold compounds. Journal of Chemical Physics 91: 1762–1774.
82 82 Stevens, W.J., Basch, H., and Krauss, M. (1984). Compact effective potentials and efficient shared‐exponent basis‐sets for the 1st‐row and 2nd‐row atoms. Journal of Chemical Physics 81: 6026–6033.
83 83 Roy, L.E., Hay, P.J., Martin, R.L. et al. (2008). Revised basis sets for the LANL effective core potentials. Journal of Chemical Theory and Computation 4: 1029–1031.
84 84 Schäfer, A., Horn, H., Ahlrichs, R. et al. (1992). Fully optimized contracted Gaussian basis sets for atoms Li to Kr. Journal of Chemical Physics 97: 2571.
85 85 Schäfer, A., Horn, H., Ahlrichs, R. et al. (1994). Fully optimized contracted Gaussian basis sets of triple zeta valence. Journal of Chemical Physics 100: 5829.
86 86 Hättig, C. (2005). Optimization of auxiliary basis sets for RI‐MP2 and RI‐CC2 calculations: core–valence and quintuple‐ζ basis sets for H to Ar and QZVPP basis sets for Li to Kr. Physical Chemistry Chemical Physics 7: 59–66.
87 87 Hellweg, A., Hättig, C., Höfener, S. et al. (2007). Optimized accurate auxiliary basis sets for RI‐MP2 and RI‐CC2 calculations for the atoms Rb to Rn. Theoretical Chemistry Accounts 117: 587–597.
88 88 Tomasi, J., Mennucci, B., Cammi, R. et al. (2005). Quantum mechanical continuum solvation models. Chemical Reviews 105: 2999–3093.
89 89 Tomasi, J., Mennucci, B., Cancès, E. et al. (1999). The IEF version of the PCM solvation method: an overview of a new method addressed to study molecular solutes at the QM ab initio level. Journal of Molecular Structure THEOCHEM 464: 211–226.
90 90 Cossi, M., Rega, N., Scalmani, G. et al. (2003). Energies, structures, and electronic properties of molecules in solution with the C‐PCM solvation model. Journal of Computational Chemistry 24: 669–681.
91 91 Barone, V. and Cossi, M. (1998). Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. Journal of Physical Chemistry A 102: 1995–2001.
92 92 Foresman, J.B., Keith, T.A., Wiberg, K.B. et al. (1996). Solvent effects 5. The influence of cavity shape, truncation of electrostatics, and electron correlation on ab initio reaction field calculations. Journal of Physical Chemistry 100: 16098–16104.
93 93 Marenich, A.V., Cramer, C.J., Truhlar, D.G. et al. (2009). Universal solvation model based on solute electron density and a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. Journal of Physical Chemistry B 113: 6378–6396.
94 94 Chai, J.D. and Head‐Gordon, M. (2008). Long‐range corrected hybrid density functionals with damped atom–atom dispersion corrections. Physical Chemistry Chemical Physics 10: 6615–6620.
95 95 Chai, J.D. and Head‐Gordon, M. (2008). Systematic optimization of long‐range corrected hybrid density functionals. Journal of Chemical Physics 128: 084106.
96 96 Frisch, M.J., Trucks, G.W., Schlegel, H.B. et al. (2010). Gaussian 09. Wallingford, CT: Gaussian.
97 97 Velde, G., Bickelhaupt, F.M., Baerends, E.J. et al. (2001). Chemistry with ADF. Journal of Computational Chemistry 22: 931.
98 98 Neese, F. (2012). The ORCA program system. Wiley Interdisciplinary Reviews: Computational Molecular Science 2: 73–78.
99 99 Barca, G.M.J., Bertoni, C., Carrington, L. et al. (2020). Recent developments in the general atomic and molecular electronic structure system. Journal of Chemical Physics 152: 154102.
100 100 Werner, H.‐J., Knowles, P.J., Knizia, G. et al. (2012). Molpro: a general‐purpose quantum chemistry program package. Wiley Interdisciplinary Reviews: Computational Molecular Science 2: 242–253.
101 101 Aquilante, F., Autschbach, J., Carlson, R.K. et al. (2016). MOLCAS 8: new capabilities for multiconfigurational quantum chemical calculations across the periodic table. Journal of Computational Chemistry 37: 506–541.
102 102 Shao, Y., Gan, Z., and Epifanovsky, E. (2015). Advances in molecular quantum chemistry contained in the Q‐Chem 4 program package. Molecular Physics 113: 184–215.
103 103 Valiev, M., Bylaska, E.J., and Govind, N. (2010). NWChem: a comprehensive and scalable open‐source solution for large scale molecular simulations. Computer Physics Communications 181: 1477.
104 104 Dam, H.J.J., Jong, W.A., and Bylaska, E. (2011). NWChem: scalable parallel computational chemistry. Wiley Interdisciplinary Reviews: Computational Molecular Science 1: 888–894.
105 105 Balasubramani, S.G., Chen, G.P., and Coriani, S. (2020). TURBOMOLE: modular program suite for ab initio quantum‐chemical and condensed‐matter simulations. Journal of Chemical Physics 152: 184107.
106 106 Ma, Q. and Werner, H.‐J. (2018). Explicitly correlated local coupled‐cluster methods using pair natural orbitals. Wiley Interdisciplinary Reviews: Computational Molecular Science 8: e1371.
107 107 Aquilante, F., Pedersen, T.B., and Veryazov, V. (2012). MOLCAS – a software for multiconfigurational quantum chemistry calculations. Wiley Interdisciplinary Reviews: Computational Molecular Science 3: 143–149.
108 108 Sun, Q., Berkelbash, T.C., and Blunt, N.S. (2018). PYSCF: the Python‐based simulations of chemistry framework. Wiley Interdisciplinary Reviews: Computational Molecular Science 8: e1340.