Читать книгу Практическое руководство по статистическому управлению процессами - Ю. П. Адлер - Страница 5
Глава 2
История возникновения статистического мышления. Основы теории вариабельности
ОглавлениеМышление – это то, чем каждый из нас, слава богу, обладает от рождения. И пока что оно нас не подводит. Но что такое «статистическое мышление»? И зачем оно нам нужно (если нужно)? Такие вопросы могут возникнуть у читателя после знакомства с названием этого параграфа. Простых ответов на подобные вопросы нам дать не удастся. Поэтому вам придется довольствоваться сложными разъяснениями. Но прежде, чем мы попытаемся их дать, заметим, что сам термин «статистическое мышление» представляется не совсем удачным. Дело в том, что слово «статистический» у многих людей вызывает неприятие, поскольку напоминает об изучавшейся когда-то в институте дисциплине под названием «математическая статистика», которую большинство людей не помнит и побаивается.
Между тем под «статистическим мышлением» мы понимаем[3] подход к принятию любых решений как в жизни отдельного человека, так и на всех уровнях организации, причем решений как оперативных или тактических, так и стратегических. Более точно наше понимание сформулировано во врезке ниже.
Статистическое мышление – это умение принимать системные решения в мире, подверженном вариабельности.
Ниже мы постараемся расшифровать смысл приведенного определения, а здесь просто заметим, что статистическое мышление – это вовсе не использование статистических методов, по крайней мере в подавляющем большинстве жизненных ситуаций. Статистическое мышление – это точка зрения, позиция, взгляд на мир, помогающие принимать эффективные решения благодаря системному подходу к возникающим проблемам. Очевидна важность этой позиции, ибо если мы делаем ошибку любого типа – совершения или несовершения – т. е. вмешиваемся в процесс, когда этого делать не надо, или не вмешиваемся, когда это крайне важно, то процесс только ухудшается. Аналогичный результат возникает, если в процесс вмешиваются не те люди, кому следует это делать, и не вмешиваются те, кому следовало. Попробуем же разобраться в сути обсуждаемого подхода, для чего сначала бросим взгляд на историческую ретроспективу его возникновения и эволюции.
Открытие У. Шухарта
Поводом для возникновения статистического мышления послужила практическая задача борьбы с дефектами продукции, которая была поставлена перед молодым физиком Уолтером Шухартом (1891–1967), принятым в 1923 г. на работу в знаменитую Bell Laboratories (лаборатория того самого А. Белла, что изобрел телефон) [Нив 2005, Говард 1995, Адлер 2012]. Задача эта была связана с одной трудностью, возникшей в ходе телефонизации Америки. При тогдашней технологии прокладки телефонных сетей приходилось примерно через каждые 500 м вставлять в линию связи усилитель сигнала размером с письменный стол (полупроводниковых приборов, на которых построена вся современная миниатюризация, еще не было[4]), закапывая его в землю. И все было бы хорошо, если бы не одно обстоятельство. Лампы в этих усилителях перегорали не по графику, а когда им вздумается. Из-за этого у бригад ремонтников возникали большие трудности. Не удавалось заранее определить требуемое число ремонтных бригад, их потребности в транспорте и запасах ламп для замены. Проблема заключалась в большом разбросе времени наработки до отказа усилительных ламп, и хотя завод-изготовитель определял нормативный срок непрерывной работы, лампы почему-то ничего не знали про требования ТУ и отказывали как попало. Естественно, возникало много вопросов. Например, почему разброс так велик и нерегулярен? И что можно сделать, чтобы ввести его в приемлемые рамки? Как наилучшим образом описывать само явление разброса времени работы ламп? И так далее. Стоит заметить, что это было одно из первых (хотя и далеко не первое) столкновение массового производства с проблемой вариабельности, т. е. разброса.
Некоторыми из этих вопросов и занялся У. Шухарт. С самого начала он был фанатиком применения статистических методов. Его коллега и друг Э. Деминг так писал об этом в статье, посвященной памяти У. Шухарта [Deming 1967]: «Управление качеством означало для него применение статистических методов всюду: от сырьевых материалов до готовых изделий и обратно – в разработке новых изделий, при пересмотре требований к сырью, в непрерывном цикле обработки результатов, получаемых при исследовании покупательского спроса и из других источников».
Хотя традиционный взгляд на контроль качества был обращен в то время на обнаружение и изъятие негодных изделий из партии продукции, У. Шухарт увидел возможность увеличения выхода годных изделий непосредственно в процессе производства. Профилактика, направленная на предотвращение брака или несоответствий, несомненно, важнее и полезнее, чем отбраковка, ибо отбраковка сама по себе не приводит к улучшению изделий: она лишь разделяет их на две группы – принимаемых и бракуемых. Качество как данной партии, так и будущих партий при отбраковке не меняется. В то же время профилактика, т. е. система мер, направленных на предотвращение появления некачественных изделий, ведет к улучшению будущих партий продукции.
Первое, до чего додумался У. Шухарт, размышляя над поставленными вопросами, было обнаружение двух принципиально различных источников разброса или вариабельности (изменчивости)[5] показателей качества, к которым чувствителен потребитель.
Первый источник вариабельности – сама система, в которой производится продукция (услуга). Понятие о производственной системе довольно неопределенно. Сюда относятся и здания, и оборудование, и сырье, и люди, и многое другое. Практически это все, что может повлиять на интересующие нас показатели качества. Пока система не меняется, вариабельность характеризующих ее параметров остается практически постоянной. Поэтому вариабельность – одна из важнейших характеристик системы, которую надо знать, если мы хотим управлять системой или совершенствовать ее. Понятно, что для этого сначала придется научиться эту самую вариабельность каким-то образом измерять.
Второй источник имеет совершенно другую природу. Существует, оказывается, вариабельность, обусловленная вмешательством в систему тех или иных факторов, не принадлежащих системе, т. е. внешних по отношению к ней (например, неправильное поведение оператора, или неправильный ход какого-то технологического режима вследствие сбоя настройки, или непредвиденное изменение внешних условий и т. д.). Эта вариабельность проявляется спорадически, нерегулярно. Ее величина может сильно меняться от случая к случаю, причем здесь каждый случай – особый, и отклонение от той установившейся вариабельности, какая характерна для вариаций, вызываемых самой системой, может быть каким угодно.
В реальной жизни на выходе системы мы наблюдаем смесь, сумму вариаций, происходящих из этих двух источников.
Если бы теперь мы смогли определить, какие именно источники и как влияют на выход системы, то стало бы понятно, какие действия стоит предпринять, чтобы улучшить ситуацию. Другими словами, если бы мы знали, вызваны ли те или иные вариации системой или внешними по отношению к системе силами, то мы одновременно знали бы, кто и каким образом должен действовать. В самом деле, если, например, вариации обусловлены системой, т. е. тем, что процесс устроен именно так, как он устроен, то ясно, что вмешиваться в него изнутри системы бессмысленно, так как такое вмешательство, будучи незапланированным для системы, ведет только к ее раскачке (выводит систему из стабильного состояния). Нас или нашего потребителя может, конечно, не устраивать вариабельность системы. Но тогда надо менять систему в целом (вспомним о системном подходе), т. е. нам надо реорганизовать систему. А это в свою очередь означает, что делать это должны те люди, которые «стоят над системой», т. е. высший менеджмент. Поэтому всякая попытка справиться с ситуацией за счет сотрудников-исполнителей заведомо обречена на неудачу. Более того, она практически неизбежно приведет к существенному ухудшению положения дел.
С другой стороны, если вариации обусловлены внешними по отношению к системе причинами, т. е. тем, чего в нормально работающей системе быть не должно, то здесь надо немедленно браться за дело самим сотрудникам. Их задача – создать команду для изучения возможных причин возникновения нерегулярных вариаций, которые довольно часто, хотя и далеко не всегда, вызываются так называемым человеческим фактором (это, впрочем, вовсе не означает, что такие причины легко обнаружить.) В любом случае следует начать непрерывную борьбу за устранение всех «лишних» вариаций и за достижение стабильности. Только стабильность делает систему предсказуемой, а значит, управляемой (подробнее это утверждение рассмотрено ниже).
Основы теории вариабельности
Итак, в 1924 г. У. Шухарт заложил основы того, что сейчас принято называть теорией вариабельности. Основные положения этой теории можно кратко сформулировать следующим образом: все виды продукции и услуг, а также все процессы, в которых они создаются и/или преобразуются, подвержены отклонениям от заданных значений, называемых вариациями.
Вариации своим происхождением обязаны двум принципиально разным источникам, которые принято называть общими (common) и особыми или специальными (assignable) причинами вариаций[6].
Кроме общих «…существуют неизвестные причины вариабельности качества продукции, не принадлежащие постоянной системе, …и такие причины получили название особых» [Shewhart 1931, p. 14].
Общими причинами вариаций называют причины, составляющие неотъемлемую часть данного процесса и внутренне ему присущие. Они связаны с неабсолютной точностью поддержания параметров и условий осуществления процесса, с неабсолютной идентичностью условий на его входах и выходах и т. д. Другими словами, общие причины вариаций – это результат совместного воздействия большого числа случайных факторов, каждый из которых вносит весьма малый вклад в результирующую вариацию и влияние которых мы по тем или иным соображениям не можем или не хотим отделить друг от друга.
Особые причины вариаций – это те причины, которые возникают из-за внешних по отношению к процессу воздействий на него и не служат его неотъемлемой частью. Они связаны с приложением к процессу незапланированных воздействий, не предусмотренных его нормальным ходом. Другими словами, это – результат конкретных случайных воздействий на процесс, причем тот факт, что именно данная конкретная причина вызывает данное конкретное отклонение параметров/характеристик процесса от заданных значений, часто (но далеко не всегда) и приводит к тому, что эту причину можно обнаружить без приложения каких-то исключительных усилий или затрат.
Разделение причин вариаций на два указанных вида принципиально потому, что борьба с вариабельностью процесса в этих двух случаях требует различного подхода. Особые причины вариаций требуют локального вмешательства в процесс, тогда как общие причины вариаций требуют вмешательства в систему.
Локальное вмешательство:
● обычно осуществляется людьми, занятыми в процессе и близкими к нему (т. е. это линейный персонал, линейные руководители и т. д.);
● обычно нужно примерно для очень небольшого числа всех возникающих в процессе проблем (это выяснилось после многих лет применения данного подхода на практике, откуда и вытекают известное правило Дж. Джурана 85/15 или правило Деминга 94/6 – см., например, [Конарева 2008] – и все следствия из этих правил);
● неэффективно или ухудшает ситуацию, если в процессе отсутствуют особые причины вариаций, и, напротив, эффективно, если они присутствуют.
Вмешательство в систему:
● почти всегда требует действий со стороны высшего менеджмента;
● обычно нужно примерно для 85–95 % всех возникающих в процессе проблем;
● неэффективно или ухудшает ситуацию, если в процессе присутствуют специальные причины вариаций, и, напротив, эффективно, если они отсутствуют.
Когда люди не понимают теории вариабельности, они:
● видят тенденции там, где их нет, и не видят их там, где они есть;
● пытаются объяснить естественный разброс как особые события;
● необоснованно обвиняют и/или вознаграждают сотрудников;
● не могут эффективно спланировать будущее и улучшать систему;
● часто следуют знаменитому правилу: «хотели как лучше, а получилось как всегда».
Дело за малым – осталось организовать процесс мониторинга, направленный на постоянную диагностику ситуации. Он призван представить текущую информацию в такой форме, чтобы менеджменту было ясно, какие решения следует принимать на ее основе.
В 1924 г. У. Шухарт предложил свое решение. Руководителем его департамента был Р. Джонс, а непосредственным начальником – Дж. Эдвардс, занявший впоследствии место Р. Джонса и ставший потом первым президентом Американского общества контроля качества. Вот как он вспоминал об этом (цитируется по [Golomski 1967]): «16 мая 1924 г. …доктор Шухарт подготовил небольшую памятную записку размером всего в одну страницу. Около трети ее занимала простая диаграмма, которая сегодня известна всем нам как схема контрольной карты. Та диаграмма и текст к ней заключали в себе все существенные принципы и выводы, составляющие то, что известно нам теперь как процесс управления качеством». В работе [Godfrey 1986] воспроизведен полный текст этого исторического документа, который один из авторов (Ю. А.) перевел на русский язык [Годфри 1992] и фрагмент которого приводится ниже (см. рис. 2.1).
Заметки, о которых упоминал У. Шухарт, были опубликованы на следующий год [Shewhart 1925], и мир узнал о существовании контрольных карт, названных впоследствии контрольными картами Шухарта (ККШ).
Контрольные карты и стали, по мысли У. Шухарта, диагностическим инструментом, предназначенным для различения процессов с общими и особыми причинами вариаций. Вот как это сформулировал Э. Деминг в 1986 г. в своем предисловии к репринту книги Шухарта 1939 г. [Shewhart 1939, reprint 1986].
«Значение контрольных карт в наибольшей степени состоит в том, что они позволяют разделить причины вариаций на два источника: 1) собственно системные (д-р Шухарт назвал их "случайными причинами"), ответственность за них лежит на менеджменте; и 2) обнаружимые причины, названные д-ром Демингом "особыми", специфичные для некоторого мимолетного события, которые обычно могут быть обнаружены и устранены, к удовольствию специалиста, ответственного за процесс. Процесс находится в статистически управляемом состоянии, если на него более не действуют особые причины. Результат работы процесса, находящегося в управляемом состоянии, предсказуем» (Предисловие д-ра Деминга к репринту книги Шухарта 1939 г., 1986).
В знаменитой первой книге У. Шухарта [Shewhart 1931] теория контрольных карт была построена. Ничто не предвещало трудностей на пути ее широкого внедрения в жизнь, но судьба распорядилась иначе. И нам кажется важным выяснить почему.
Детерминированность и случайность
Статистическое мышление, несомненно, одно из важнейших изобретений ХХ в. Тем более удивительно, что оно вот уже более 80 лет остается практически незамеченным большинством человечества и очень редко применяется в практике современного менеджмента.
Однако в повседневной жизни мы часто пользуемся статистическим мышлением, не подозревая об этом. Ведь суть этой концепции можно сформулировать в том числе и так: принимайте решения не на основе точечных значений, а с учетом разброса параметров процессов.
Или более резко: в вариабельном мире нельзя принимать решения на основе сравнения отдельных точек процесса.
3
Такое понимание не есть прерогатива авторов данной книги (подробнее см. ниже).
4
Первый полупроводниковый (германиевый) транзистор был создан в той же самой Bell Lab и был впервые продемонстрирован публике летом 1948 г., за что его изобретатели – Д. Бардин, У. Шокли и У. Браттейн – получили Нобелевскую премию в 1956 г.
5
Далее мы используем в основном термин вариабельность как уже установившийся в литературе.
6
Английский термин assignable означает «могущий быть отнесенным к чему-то» – его не удается перевести на русский каким-либо одним словом, поэтому в русскоязычной литературе по SPC одинаково часто можно встретить и «особые», и «специальные» причины вариаций. Мы думаем, что выбор из этих двух вариантов – дело вкуса.