Читать книгу Монтаж и сервис оборудования по использованию возобновляемых источников энергии. Том 4. Монтаж и сервис тепловых насосов - Юрий Степанович Почанин - Страница 3

Глава1 Принцип работы тепловых насосов

Оглавление

Идею создания испарительного теплового насоса была высказана английским физиком Кельвином в 1852 г. В основе теплового насоса лежат два физических явления. Первое: когда вещество испаряется, оно поглощает тепло, а когда конденсируется, отдает его. Второе: когда давление повышается повышается и температура испарения и конденсации вещества


В тепловом насосе происходит отбор теплоты низкопотенциального источника и его утилизация следующим образом. Теплоноситель, проходя по трубопроводу, проложенному в земле или воде, нагревается на несколько градусов, затем, проходя через теплообменник испарителя теплового насоса отдает аккумулированную теплоту. Хладагент с низкой температурой кипения в испарителе при низком давлении, отбирая эту теплоту, переходит из жидкого состояния в газообразное. Компрессор сжимает хладагент, при повышении давления повышается температура газа до 50-80°С, и затем горячий газ поступает в теплообменник конденсатора, где происходит передача тепла в систему отопления.

В настоящее время наиболее широко применяются два класса тепловых насосов. К одному классу можно отнести термоэлектрические на эффекте Пельтье, а к другому – испарительные, которые, в свою очередь подразделяются на механические компрессорные (поршневые или турбинные) и абсорбционные (диффузионные). Кроме того, постепенно возрастает интерес к использованию в качестве тепловых насосов вихревых труб, в которых работает эффект Ранка.

Тепловые насосы на эффекте Пельтье. Эффект Пельтье заключается в том, что при подаче на две стороны специально подготовленной полупроводниковой пластины, рис.3, небольшого постоянного напряжения, одна сторона этой пластины нагревается, а другая – охлаждается.


Рис. 3 Элемент Пельтье

Физическая суть эффекта состоит в следующем. Пластина элемента Пельтье (он же «термоэлектрический элемент», англ. Thermoelectric Cooler, TEC), состоит из двух слоёв полупроводника с разными уровнями энергии электронов в зоне проводимости. При переходе электрона под действием внешнего напряжения в более высокоэнергетическую зону проводимости другого полупроводника, он должен приобрести энергию. При получении им этой энергии происходит охлаждение места контакта полупроводников (при протекании тока в обратном направлении происходит обратный эффект – место контакта слоёв нагревается дополнительно к обычному омическому нагреву). Достоинством элементов Пельтье является максимальная простота их конструкции (что может быть проще пластины, к которой припаяны два проводка) и полное отсутствие каких-либо движущихся частей, а также внутренних потоков жидкостей или газов. Следствием этого является абсолютная бесшумность работы, компактность, полное безразличие к ориентации в пространстве (при условии обеспечения достаточного теплоотвода) и очень высокая стойкость к вибрационным и ударным нагрузкам. Да и рабочее напряжение составляет лишь несколько вольт, поэтому для работы вполне достаточно нескольких батареек или автомобильного аккумулятора.

Главным недостатком термоэлектрических элементов является их относительно невысокая эффективность – ориентировочно можно считать, что на единицу перекачанного тепла им потребуется вдвое больше подведённой внешней энергии, то есть, подведя 1 Дж электрической энергии, из охлаждаемой области мы сможем удалить лишь 0.5 Дж тепла. Понятно, что все суммарные 1.5 Дж выделятся на «тёплой» стороне элемента Пельтье и их надо будет отвести во внешнюю среду. Это во много раз ниже эффективности компрессионных испарительных тепловых насосов.

На фоне столь низкого КПД обычно уже не так важны остальные недостатки, – а это небольшая удельная производительность в сочетании с высокой удельной стоимостью. В соответствии с их особенностями, основная область применения элементов Пельтье в настоящее время обычно ограничивается случаями, когда требуется не очень сильно охладить что-либо не слишком мощное, особенно в условиях сильной тряски и вибраций и при жёстких ограничениях по массе и габаритам, – например, различные узлы и детали электронной аппаратуры, прежде всего военной, авиационной и космической. Пожалуй, самое широкое распространение в быту элементы Пельтье получили в маломощных (5..30 Вт) переносных автомобильных холодильниках.

Испарительные компрессионные тепловые насосы. Принцип работы этого класса тепловых насосов заключается в следующем. В основе работы теплового насоса лежит обратный термодинамический цикл Карно. Хладагент обладает важным свойством – закипать при отрицательных температурах. Что бы заставить хладагент переносить тепло, тепловой насос оснащают четырьмя ключевыми элементами: компрессор, расширительный клапан (ТРВ), испаритель и конденсатор, рис.4.

Для удобства описания принципа работы теплового насоса, разделим цикл на 4 основные фазы:

I. Расширение. Хладагент, находящийся в жидком состоянии, продавливается через расширительное устройство – терморегулирующий вентиль (ТРВ). Задача ТРВ резко понизить давление рабочей жидкости. При относительно низком давлении (около 7 бар) рабочая жидкость способна закипеть, даже при температуре -25 ˚С. Это важно, поскольку кипение и испарение и есть процесс поглощения и выделения энергии, а это необходимое условие для второй фазы.

II. Кипение. После ТРВ жидкость поступает в испаритель, который представляет собой теплообменник. При помощи этого компонента, тепловой насос отбирает тепло от окружающей среды. Хладагент закипает и испаряется, поглощая теплоту. В итоге на выходе из испарителя хладагент находиться полностью в парообразном состоянии и всего на несколько градусов теплее своего первоначального состояния. Однако, благодаря переходу в пар, рабочая жидкость смогла получить достаточное количество энергии и готова к следующему этапу.

III. Сжатие. Дальше хладагент поступает в компрессор, при помощи которого тепловой насос сжимает рабочую жидкость. В процессе сжатия, давление хладагента повышается, это сопровождается одновременным нагревом.

IV. Сжижение. После компрессора, горячий хладагент поступает в конденсатор, который так же является теплообменником. В конденсаторе рабочая жидкость конденсируется, отдавая тепло и превращаясь снова в жидкость. Это тепло передается системе отопления и горячего водяного снабжения (ГВС). На выходе из конденсатора хладагент находится в жидкой фазе и снова поступает на ТРВ.


Рис.4 Схема рабочего цикла испарительного компрессионного теплового насоса.


Что бы лучше понять принцип работы теплового насоса, рассмотрим пять основных физических явлений, лежащих в его основе.

1. Тепло содержится в воздухе и земле даже при отрицательных температурах. Одним из препятствий на пути к пониманию принципов работы теплового насоса является заблуждение, что нельзя извлекать теплоту при отрицательных температурах воздуха или грунта. Тепло – это энергии связанная с движением (вибрацией) малейших частиц: молекул, атомов, ионов. В общепринятой и привычной нам шкале Цельсия – ноль градусов, это отметка замерзания воды. При этом, в воздухе содержится значительно меньше тепла чем при 40˚С жары, но всё же оно есть и его можно использовать. Движение частиц полностью останавливается при температуре минус 273˚С, что соответствует 0˚ по шкале Кельвина.

2. Тепло поступает от тёплого источника к холодной среде. Согласно второму закону термодинамики, тепло поступает от тела с высокой температурой к телу с низкой температурой. Что бы «развернуть» этот поток при работе теплового насоса используются те самые два теплообменника. В первом теплообменнике (испарителе) хладагент с низкой температурой поглощает тепло от окружающей среды (воздух, грунт или вода), рис.5. Во втором теплообменнике (конденсаторе) уже горячий хладагент, после сжатия в компрессоре теплового насоса, передает тепло в контуре отопления, рис. 6. В обоих случаях выполняется закон передачи энергии от высокотемпературного источника энергии к низкотемпературному.


Рис.5 Передача тепла в испарителе теплового насоса



Рис.6 Передача тепла в конденсаторе теплового насоса


3. Сжатие газа повышает температуру, расширение её снижает. Тепловой насос нагревает рабочую жидкость после испарителя за счёт сжатия. Когда газ сжимается, температура, а значит и количество тепла, содержащееся в газе, увеличивается. Это происходит вследствие значительного увеличения вибрации частиц, которым становится «тесно». За этот процесс в работе теплового насоса отвечает компрессор. С другой стороны, расширение газа или жидкости приводит к снижению давления и температуры. Тепловой насос обеспечивает это при помощи расширительного клапана – ТРВ.

4. Фазовый переход рабочей среды. Если жидкость нагрелась до точки кипения, то наступает переходная фаза. Во время этой «паузы» жидкая и газообразная (пар) фаза хладагента в контуре теплового насоса существуют одновременно. Этот процесс продолжается, пока вся жидкость не превратится в пар. Основной фокус в том, что всё поглощённая энергия уходит на испарение и не вызывает рост температуры. Это тепло называют скрытой теплотой, и его количество у различных веществ различно. Хоть это тепло и называют скрытым, согласно закону сохранения энергии оно никуда не удаляется, а лишь накапливается и затем передается. Вся поглощенное во время испарения (кипения) энергия, затем выделяется при конденсации, т.е. обратном фазовом переходе из пара в жидкость. Использования фазового перехода, дает возможность значительно увеличить эффективность теплового насоса. Рабочая среда контура теплового насоса во время изменения фазы поглощает/выделяет значительно больше тепла, чем при изменении только температуры.

5. Температура испарения и конденсации рабочей среды зависит от давления. Температура, при которой рабочая жидкость конденсируется или испаряется, зависит от давления. Сжимая газообразный хладагент, компрессор так же значительно повышает давление. При большом давлении процесс конденсации происходит при относительно высоких температурах, позволяя отдавать тепловую энергию в конденсаторе теплового насоса в систему отопления.

В свою очередь, низкое давление рабочей среды приводит к тому, что хладагент может закипать при довольно низкой температуре. Этому способствует так же основное свойство рабочей жидкости.  Хладагент испаряется, а значит и поглощает тепло, при температуре -50˚С в условиях атмосферного давления. Благодаря этому свойству хладагента тепловой насос может отбирать тепло из окружающей среды даже при температуре -20˚С и отдавать тепло при температуре +60˚С. В природе это явление можно сравнить с кипением воды в горах при разряженном воздухе. На высоте 3 000 м давление составляет 0,7 бар. В таких условиях вода кипит уже при 90˚С. На уровне моря, при атмосферном давлении равном 1 бар, вода кипит при 100˚С. С увеличением давления, увеличивается и температура кипения воды. Таким образом, на «горячем» участке компрессор-конденсатор-дроссель хладагент находится под высоким давлением и преимущественно в жидком состоянии, а на «холодном» участке дроссель-испаритель-компрессор давление низкое, а хладагент в основном находится в парообразном состоянии. И сжатие, и разрежение создаются одним и тем же компрессором. С противоположной от компрессора стороны тракта зоны высокого и низкого давления разделяет дроссель, ограничивающий поток хладагента.

В мощных промышленных холодильниках в качестве хладагента используется ядовитый, но эффективный аммиак, производительные турбокомпрессоры и иногда детандеры. В бытовых холодильниках и кондиционерах хладагентом обычно являются более безопасные фреоны, а вместо турбоагрегатов используются поршневые компрессоры и «капиллярные трубки» (дроссели).

В общем случае изменение агрегатного состояния хладагента необязательно – принцип будет рабочим и для постоянно газообразного хладагента, – однако большая теплота изменения агрегатного состояния многократно повышает эффективность рабочего цикла. Но вот если хладагент будет всё время находиться в жидком виде, эффекта не будет принципиально – ведь жидкость практически несжимаема, а потому ни повышение, ни снятие давления не изменят её температуру.

Достоинства компрессионных тепловых насосов. Главное достоинство этого типа тепловых насосов – их высокая эффективность, самая высокая среди современных тепловых насосов. Соотношение подведённой извне и перекачанной энергии у них может достигать 1:3 – то есть на каждый джоуль подведённой энергии из зоны охлаждения будет откачано 3 Дж тепла – сравните с 0.5 Дж у элементов Пельте. При этом компрессор может стоять отдельно, и выработанное им тепло (1 Дж) необязательно отводить во внешнюю среду в том же месте, где отдаются 3 Дж тепла, откачанные из зоны охлаждения.

Кстати, существует отличающаяся от общепринятой, но весьма любопытная и убедительная теория термодинамических явлений. Так вот, один из её выводов заключается в том, что работа по сжатию газа в принципе может составлять лишь порядка 30% от его общей энергии. А это означает, что соотношение подведённой и перекачанной энергии 1:3 соответствует теоретическому пределу и при термодинамических методах перекачки тепла не может быть улучшено в принципе. Впрочем, некоторые производители уже заявляют о достижении соотношения 1:5 и даже 1:6, и это соответствует действительности – ведь в реальных холодильных циклах используется не просто сжатие газообразного хладагента, но и изменение его агрегатного состояния, и именно последний процесс является главным.

Недостатки компрессионных тепловых насосов. К недостаткам этих тепловых насосов можно отнести, во-первых, само наличие компрессора, неизбежно создающего шум и подверженного износу, а во-вторых, необходимость использования специального хладагента и соблюдение абсолютной герметичности на всём его рабочем пути. Впрочем, бытовые компрессионные холодильники, непрерывно работающие по 20 лет и более без какого-либо ремонта, – совсем не редкость. Ещё одна особенность – довольно высокая чувствительность к положению в пространстве. На боку или вверх ногами вряд ли заработает и холодильник, и кондиционер. Но это связано с особенностями конкретных конструкций, а не с общим принципом работы.

Как правило, компрессионные тепловые насосы и холодильные установки проектируются в расчёте на то, что на входе компрессора весь хладагент находится в парообразном состоянии. Поэтому попадание на вход компрессора большого количества неиспарившегося жидкого хладагента может вызвать в нём гидравлический удар и, как результат, серьёзную поломку агрегата. Причиной такой ситуации может быть как износ аппаратуры, так и слишком низкая температура конденсатора – поступающий в испаритель хладагент слишком холодный и испаряется слишком вяло. Для обычного холодильника такая ситуация может возникнуть, если пытаться его включить в очень холодном помещении (например, при температуре около 0°С и ниже) либо если он только что внесён в нормальное помещение с мороза. Для работающего на обогрев компрессионного теплового насоса это может случится, если пытаться отогреть им промороженное помещение при том, что на улице тоже холодно. Не очень сложные технические решения устраняют эту опасность, но они удорожают конструкцию, а при штатной эксплуатации массовой бытовой техники в них нет нужды – такие ситуации не возникают.

Использование компрессионных тепловых насосов. В силу своей высокой эффективности именно этот тип тепловых насосов получил практически повсеместное распространение, вытеснив все остальные в различные экзотические области применения. И даже относительная сложность конструкции и её чувствительность к повреждениям не могут ограничить их широкое использование.

Испарительные абсорбционные (диффузионные) тепловые насосы. Абсорбционный тепловой насос (АТН) – специализированный агрегат, служащий для теплоснабжения различных объектов. Источником энергии в АТН может выступать пар, горячие технические жидкости, газы, горячая вода. Тепловой насос (ТН) представляет собой устройство по трансформации теплоты с низким значением температуры на более высокий температурный уровень. АТН подразделяются на солевые и водоаммиачные. Последние наиболее распространены. В водоаммиачном оборудовании хладагентом служит вода, а абсорбентом – водный солевой раствор, преимущественно бромистого лития LiBr.

Абсорбционные тепловые насосы отличаются от компрессионных тем, что вместо механического компрессора процесс повышения давления рабочего тела осуществляется с помощью так называемого термохимического компрессора. Его действие основано на использовании экзотермических процессов смешения и эндотермических процессов разделения. Остальные элементы ТН принципиально аналогичны.

В составе АТН присутствует несколько теплообменных аппаратов, собранных в один агрегат. Тепло -масса обменные аппараты соединены контурами, предназначенными для циркулирования абсорбента и хладагента. У абсорбционного теплового насоса принцип работы основывается на поглощении пара более низкой температуры абсорбентом, с одновременным выделением теплоты. За счет тепла от источника НПТ хладагент закипает под вакуумом. Абсорбент выкачивается в генератор, где выпаривается ранее поглощенный водяной пар. После этого солевой концентрат возвращается в абсорбер, а конденсат паров хладагента – в испаритель. В результате серии теплообменных процессов абсорбционный тепловой насос генерирует тепло, используемое для различных нужд, в зависимости от назначения абсорбционного теплового насоса и сферы его применения.

Рабочими телами в абсорбционных ТН служат бинарные смеси, состоящие из рабочего агента и абсорбента (поглотителя), имеющих различные температуры насыщения и способность в процессе смешения повышать температуру смеси. Наиболее известны пары веществ вода – аммиак и вода – бромистый литий.

В качестве примера рассмотрим принцип работы водоаммиачного абсорбционного ТН, схема которого представлена на рис. 7. Образующийся при разделении рабочего тела в генераторе (за счет подвода теплоты Q (при температуре t = 300°К=27°C) концентрированный пар аммиака низкого давления р поступает в теплообменник-охладитель, где конденсируется, отдавая в окружающую среду количество теплоты Q0 при температуре Т0. Полученный конденсат сжимается насосом до давления р2 = 1,0 МПа. При этом давлении за счет вторичного подвода теплоты Q" при температуре t = 300°К в теплообменнике-испарителе жидкость испаряется. Образовавшийся насыщенный пар высокого давления поступает в смеситель-абсорбер, где смешивается с раствором низкой концентрации. Выделяющаяся за счет абсорбции теплота вызывает нагрев смеси до температуры Т2 = 420°К. Образующийся из этой смеси в абсорбере пар с меньшей концентрацией, но с той же температурой Т2, поступает в теплообменник-конденсатор, где, конденсируясь, отдает теплоту сетевой воде, нагревая ее примерно до 370°К. Нагретую сетевую воду используют для нужд отопления и горячего водоснабжения. Образующийся в теплообменнике-конденсаторе конденсат раствора через дроссель направляется в генератор, где из него снова выпаривается аммиак. Обедненный раствор из генератора подается насосом в смеситель-абсорбер, и цикл повторяется.

Тепловые насосы нового поколения с одноступенчатой регенерацией бинарной смеси имеют коэффициент преобразования до 1,75, а с двухступенчатой – до 2,2.

Перспективная область применения абсорбционных ТН – круглогодовые системы кондиционирования воздуха, использующие ВЭР. В последние годы большое внимание в мире уделяется абсорбционным бромисто-литиевым ТН. Объясняется это их экологической чистотой и высокой эффективностью. Применяются они для получения горячей воды на нужды отопления, горячего водоснабжения, а также для одновременного нагрева и охлаждения технологических сред различных производств.


Рис. 7 Схема абсорбционной установки:

I – генератор; 2 – теплообменник-охладитель; 3 – теплообменник-испаритель; 4 – смеситель-абсорбер; 5 – теплообменник-конденсатор; 6 —дроссель


Рис.8 Тепловой насос абсорбционного типа

Абсорбционные тепловые насосы – довольно громоздкие агрегаты и используются, в основном, в промышленности, рис.8. Это обусловлено наличием большого количества низкотемпературного тепла на производствах, предприятиях, заводах.

АТН, в основном, применяются в промышленности, но сейчас доступны абсорбционные тепловые насосы малой мощности для дома. Единственное ограничение в их использовании – необходимость наличия низкотемпературного тепла в том виде, в каком его может поглотить абсорбент.

Достоинства абсорбционных тепловых насосов. Главное достоинство абсорбционных тепловых насосов – это возможность использовать для своей работы не только электричество, но и любой источник тепла достаточной температуры и мощности – перегретый или отработанный пар, пламя газовых, бензиновых и любых других горелок – вплоть до выхлопных газов и солнечной энергии.

Второе достоинство этих агрегатов, особенно ценное в бытовых применениях, – это возможность создания конструкций, не содержащих движущихся деталей, а потому практически бесшумных.

Наконец, в бытовых моделях рабочее тело (обычно это водо-аммиачная смесь с добавлением водорода или гелия) в используемых там объёмах не представляет большой опасности для окружающих даже в случае аварийной разгерметизации рабочей части (это сопровождается весьма неприятной вонью, так что не заметить сильную утечку невозможно, и помещение с аварийным агрегатом придётся покинуть и проветрить «автоматически»; сверхмалые же концентрации аммиака естественны и абсолютно безвредны). В промышленных установках объёмы аммиака велики и концентрация аммиака при утечках может быть смертельной, но в любом случае аммиак числится экологически безопасным, – считается, что в отличии от фреонов он не разрушает озоновый слой и не вызывает парниковый эффект.

Недостатки абсорбционных тепловых насосов. Главный недостаток этого типа тепловых насосов – более низкая эффективность по сравнению с компрессионными.

Второй недостаток – сложность конструкции самого агрегата и довольно высокая коррозионная нагрузка от рабочего тела, либо требующая использования дорогих и труднообрабатываемых коррозионно-стойких материалов, либо сокращающая срок службы агрегата до 5..7 лет. В результате стоимость «железа» получается заметно выше, чем у компрессионных установок той же производительности (прежде всего это касается мощных промышленных агрегатов).

В-третьих, многие конструкции весьма критичны к размещению при установке – в частности, некоторые модели бытовых холодильников требовали установки строго горизонтально, и уже при отклонении на несколько градусов отказывались работать. Использование принудительного перемещения рабочего тела с помощью помп в значительной степени снимает остроту этой проблемы, но подъём бесшумным термосифоном и слив самотёком требуют очень тщательного выравнивания агрегата.

В отличии от компрессионных машин абсорбционные не так боятся слишком низких температур – просто их эффективность снижается. Но это не значит, что они могут работать в лютую стужу – на морозе водный раствор аммиака банально замёрзнет в отличие от используемых в компрессионных машинах фреонов, температура замерзания которых обычно ниже –100°C. Правда, если лёд ничего не порвёт, то после оттаивания абсорбционный агрегат продолжит работу, даже если его всё это время не отключали из сети, – ведь механических насосов и компрессоров в нём нет, а мощность подогрева в бытовых моделях достаточно мала, чтобы кипение в районе нагревателя не стало слишком интенсивным. Впрочем, всё это уже зависит от особенностей конкретной конструкции.

Использование абсорбционных тепловых насосов. Несмотря на несколько меньшую эффективность и относительно более высокую стоимость по сравнению с компрессионными установками, применение абсорбционных тепловых машин абсолютно оправдано там, где нет электричества или где есть большие объёма бросового тепла (отработанный пар, горячие выхлопные или дымовые газы и т.п. – вплоть до солнечного нагрева).

В настоящее время в Европе газовые котлы иногда заменяют абсорбционными тепловыми насосами с нагревом от газовой горелки или от солярки – они позволяют не только утилизировать теплоту сгорания топлива, но и «подкачивать» дополнительное тепло с улицы или из глубины земли. Как показывает опыт, в быту вполне конкурентоспособны и варианты с электронагревом, прежде всего в диапазоне малых мощностей – где-то от 20 и до 100 Вт. Меньшие мощности – вотчина термоэлектрических элементов, а при бóльших пока безусловны преимущества компрессионных систем. Кстати, оценивая потребление энергии, стоит учитывать тот факт, что компрессионные холодильники почти всегда работают в коротко-периодическом режиме, а абсорбционные обычно включаются на гораздо более длительный срок или вообще работают непрерывно. Поэтому, даже если номинальная мощность нагревателя будет гораздо меньше мощности компрессора, соотношение среднесуточного потребления энергии может быть совсем другим.

Вихревые тепловые насосы. Вихревые тепловые насосы используют для разделения теплого и холодного воздуха, эффект Ранка. Суть эффекта заключается в том, что газ, тангенциально подаваемый в трубу на высокой скорости, внутри этой трубы закручивается и разделяется: из центра трубы можно отбирать охлаждённый газ, а с периферии – нагретый. Этот же эффект, хотя и в гораздо меньшей степени, действует и для жидкостей.

Главное достоинство этого типа тепловых насосов – простота конструкции и большая производительность. Вихревая труба не содержит движущихся деталей, и это обеспечивает ей высокую надёжность и долгий срок службы. Вибрация и положение в пространстве практически не оказывают влияния на её работу. Мощный поток воздуха хорошо предотвращает обмерзание, а эффективность вихревых труб слабо зависит от температуры входного потока. Очень важно и практическое отсутствие принципиальных температурных ограничений, связанных с переохлаждением, перегревом или замерзанием рабочего тела. В некоторых случаях играет свою роль возможность достижения рекордно высокого температурного разделения на одной ступени: в литературе приводятся цифры охлаждения на 200°С и более. Обычно одна ступень охлаждает воздух на 50..80°С.

Недостатки вихревых тепловых насосов. К сожалению, эффективность этих устройств в настоящее время заметно уступает эффективности испарительных компрессионных установок. Кроме того, для эффективной работы они требуют высокой скорости подачи рабочего тела. Максимальная эффективность отмечается при скорости входного потока, равной 40..50% от скорости звука – такой поток сам по себе создаёт немало шума, а кроме того, требует наличия производительного и мощного компрессора – устройства тоже отнюдь не тихого и довольно капризного.

Отсутствие общепризнанной теории этого явления, пригодной для практического инженерного использования, делает конструирование таких агрегатов занятием во многом эмпирическим, где результат сильно зависит от удачи: «угадал – не угадал». Более-менее надёжный результат даёт только воспроизведение уже созданных удачных образцов, а результаты попыток существенного изменения тех или иных параметров не всегда предсказуемы и иногда выглядят парадоксальными.

Использование вихревых тепловых насосов. Тем не менее, в настоящее время использование таких устройств расширяется. Они оправданы в первую очередь там, где уже есть газ под давлением, а также на различных пожаро- и взрывоопасных производствах – ведь подать в опасную зону поток воздуха под давлением зачастую гораздо безопаснее и дешевле, чем тянуть туда защищённую электропроводку и ставить электродвигатели в специальном исполнении.

Пределы эффективности тепловых насосов. Почему же тепловые насосы до сих пор не получили широкого распространения для обогрева. Причин этому несколько, и помимо субъективных, связанных с отсутствием традиций обогрева с помощью этой техники, есть и объективные, главные среди которых – обмерзание теплоотборника и относительно узкий диапазон температур для эффективной работы.

В вихревых (прежде всего газовых) установках проблем переохлаждения и обмерзания обычно нет. Они не используют изменение агрегатного состояния рабочего тела, а мощный поток воздуха выполняет функции системы «No Frost». Однако эффективность их намного меньше, чем у испарительных тепловых насосов. В испарительных тепловых насосах высокая эффективность обеспечивается за счёт изменения агрегатного состояния рабочего тела – перехода из жидкости в газ и обратно. Соответственно, этот процесс возможен в относительно узком интервале температур. При слишком высоких температурах рабочее тело всегда останется газообразным, а при слишком низких – будет испаряться с большим трудом или вообще замёрзнет. В результате при выходе температуры за рамки оптимального диапазона наиболее энергоэффективный фазовый переход становится затруднённым или вовсе исключается из рабочего цикла, и КПД компрессионной установки существенно падает, а если хладагент останется постоянно жидким, то она вообще работать не будет.

Монтаж и сервис оборудования по использованию возобновляемых источников энергии. Том 4. Монтаж и сервис тепловых насосов

Подняться наверх