Читать книгу Конструкции и монтаж фотоэлектрических модулей - Юрий Степанович Почанин - Страница 7

2.2.2. Второе поколение фотоэлементов

Оглавление

Второе поколение фотоэлементов так же основывается на использовании p-n перехода, однако не используют кристаллический кремний как основной материал. Обычно используются следующие материалы:

–аморфный кремний (a-Si),

–микро- и нанокремний (pc-Si/nc-Si),

–кремний на стекле (CSG),

–теллурид кадмия (CdTe),

–селенид меди -индия-галлия (CIGS).

Фотоэлементы второго поколения являются тонкопленочными, и они производятся вакуумным методом. Вакуумная технология по сравнению с технологией производства кристаллических ФЭП является менее энергозатратной, а также характеризуется меньшим объемом капитальных вложений. Она позволяет выпускать гибкие дешевые ФЭП большой площади, однако коэффициент преобразования таких элементов ниже по сравнению с ФЭП первого поколения.

Как правило, толщина поглощающего свет слоя полупроводника составляет всего от 1 до 3 мкм. Тонкопленочные фотоэлементы, представляющие собой тонкую пластину из стекла с нанесенными слоями полупроводников либо фольгу, можно размещать на поверхности любой конфигурации, а также наносить на ткани, и даже использовать вместо жалюзи.

Наиболее распространены аморфный кремний, теллурид кадмия (CdTe) и. селенид индия/галлия/меди (CIGS).

Аморфные кремниевые тонкопленочные солнечные элементы присутствуют на рынке уже более 20 лет, и a-Si, вероятно, является наиболее хорошо развитой технологией тонкопленочных солнечных элементов. Аморфный кремний выступил в качестве более дешевой альтернативы монокристаллическому. Первые СЭ на его основе были созданы в 1975 году. Оптическое поглощение аморфного кремния в 20 раз выше, чем кристаллического. Поэтому для существенного поглощения видимого света достаточно пленки а-Si:Н толщиной 0,5–1,0 мкм вместо дорогостоящих кремниевых 300-мкм подложек. Кроме того, благодаря существующим технологиям получения тонких пленок аморфного кремния большой площади, не требуется операции резки, шлифовки и полировки, необходимых для СЭ на основе монокристаллического кремния. По сравнению с поликристаллическими кремниевыми элементами изделия на основе a-Si:Н производят при более низких температурах (300°С) и при этом можно использовать дешевые стеклянные подложки, что сократит расход кремния в 20 раз.

Процесс производства таких фотоэлементов более автоматизирован и имеет значительно меньшую себестоимость. Основным недостатком фотоэлементов второго поколения является меньшая эффективность, по сравнению с фотоэлементами первого поколения, которая колеблется в зависимости от технологии от 7-15%. В настоящее время их доля рынка составляет около 18%.

Аморфные пластины получают путем напыления кремния и примесей в вакууме. Слой кремния наносится на прочный слой специальной фольги. Механизм их изготовления совершенно иной, чем у кристаллических фотоэлементов. Для них используется гидрид вместо чистого кремния. Его нагревают до парообразного состояния. Когда пары достигают подложки, они осаждаются на ней. Затраты на изготовления снижаются, а кристаллы не образуются (в классическом понимании). Полученные фотоэлементы в основе имеют полимерную подложку гибкую либо жесткий стеклянный лист. Современные модели комбинируют из нескольких слоев, обогащенных германием и углеродом. Это позволяет устранить главный недостаток панелей a-Si – быструю деградацию ячеек.

За последнее время коренным образом изменилась и технология нанесения слоев полупроводника. Ранее нанесение осуществлялось путем вакуумного напыления, в настоящее же время разработана инновационная технология – печатание специальными чернилами, содержащими смесь полупроводниковых наночастиц. Применение новой технологии и увеличение объемов производства привели к значительному удешевлению солнечной электроэнергии.

Разработано уже 3 поколения панелей из аморфного кремния, рис. 2.4, анализ характеристик которых дает право говорить о растущем КПД. Первые образцы отличались эффективностью, едва достигавшей 5%, у второго поколения это значение достигало 9, а у последних разработок это уже 12%.

Панели из аморфных кремниевых пластин имеют следующие преимущества:

–гибкая основа, упрощающая монтаж и расширяющая область использования;

–в рассеянном свет высокий КПД;

–стабильность при высокой температуре;

–устойчивость к повреждениям механического характера;

–независимость от загрязнений.


Рис.2.4. Панель из аморфных кремниевых пластин


При правильной эксплуатации они служат не менее 20 лет, в течение этого времени падение мощности составляет 15-20%.

Их рекомендуется использовать там, где часто наблюдается облачная и пасмурная погода. Они будут неплохо работать в условиях рассеянного или отраженного света. Также годятся они и для жаркого климата, так как лучше переносят нагревание и теряют при этом меньше мощности. Единственным минусом считается потребность в большой площади.

Теллурид кадмия считается лучшим однопереходным полупроводниковым материалом по совокупности трех показателей – поглощающая способность, надежность, стоимость. CdTe значительно производительнее кремния и намного дешевле более эффективных пленок на базе дорогостоящих германия и индия.

Подложка пленки может быть не металлической, а стеклянной, а сами ячейки – полужесткими или гибкими. CdTe отличается стабильностью, долговечностью, малой чувствительностью к изменению освещения и быстро растущим КПД новых поколений модулей.

Несмотря на то, что кадмий является токсичным веществом, его использование компенсируется вторичной переработкой материала. Тем не менее, озабоченность по этому поводу все еще существует, и поэтому широкое применение этой технологии ограничено.

Особенность строения солнечных панелей типа CIGS заключается в том, что они созданы на сульфидах редкоземельных элементов путем композитного смешения галлия, индия и меди. Такие панели являются «чемпионами» по КПД и стойкости, но стоят очень дорого.

Коммерческое применение пока ограничено только космосом и авиационной отраслью, поскольку добыча индия и галлия на планете ограничена всего несколькими сотнями тонн в год. Даже если бы все они пошли на изготовление батарей, общая мощность панелей едва достигла бы 10 ГВт.

В практике нашли применение гибридные панели, в которых объединены аморфный кремний и монокристаллы. По параметрам панели похожи на поликристаллические аналоги, рис.2.5.


Рис.2.5. Гибридные панели

Особенность гибридных панелей – лучшее преобразование солнечной энергии в условиях рассеянного света.

Конструкции и монтаж фотоэлектрических модулей

Подняться наверх