Читать книгу Технологии энергетического использования биомассы - Юрий Степанович Почанин - Страница 4
Глава 2. Термохимические методы переработки биомассы
2.1. Энергетические характеристики различных видов топлива и параметров процесса сжигания биомассы в топочных устройствах
ОглавлениеТрадиционными методами сжигания твердых топлив являются слоевое, с кипящим (псевдоожиженным) слоем, факельно-слоевое и факельное сжигание в котлах. При слоевом сжигании твердого топлива куски размером до нескольких сантиметров подаются на решетку, продуваемую воздухом. Достоинство слоевого сжигания – простота подготовки и подачи топлива. Недостаток метода – низкая паропроизводительность.
Технология факельного сжигания топлива активно развивалась в 50-е годы прошлого века. Помол топлива производится до размера частиц в несколько микрон, и пылевоздушная смесь подается в горелки. Основные достоинства факельного сжигания: возможность сжигания любого вида топлива с высоким КПД; высокая мощность котлоагрегатов; и др. Недостатки факельного сжигания: химический и механический недожег (в совокупности до 15–25 %); сложный процесс подготовки топлива; высокая степень выбросов летучей золы, оксидов серы и азота. Как при слоевом, так и при пылеобразном сжигании топлива температуры в топке достигают 900-2000ОС и выше, а также предусмотрена дополнительная подача воздуха фурмами второго и третьего ярусов для более полного выгорания топлива.
Топки с кипящим (псевдоожиженным) слоем занимают промежуточное положение между слоевыми и факельными топками. Эта технология начала развиваться в 60-е годы прошлого века. Частицы топлива размером в несколько миллиметров подаются на решетку, на которую снизу подводится воздух. При определенной скорости воздуха слой взвешенных твердых частиц в восходящем потоке воздуха приобретает свойства жидкости (вязкость, текучесть, поверхностное натяжение). Достоинства кипящего слоя: высокий коэффициент теплопередачи; компактность топочного устройства; низкие температуры сгорания (около 850ОС), которые способствуют снижению выбросов оксидов азота; возможность эффективного серо улавливания с применением небольшого количества известняка в смеси с топливом.
Прямое сжигание древесины хорошо известно на бытовом уровне, однако эффективность бытовых печей довольно низка. Промышленные технологии энергетического использования древесины постоянно совершенствуются. Теплоэнергетические свойства топлива из древесно-растительной массы определяются рядом характеристик, таких как химический состав, теплота сгорания, влажность, твердость, содержание и состав золы.
Во многих европейских странах приоритет в развитии тепло- и электрогенерирующих мощностей отдается именно биомассе. Большое значение при этом имеет то обстоятельство, что древесина по химическому составу практически не содержит серы и азота, в продуктах ее сгорания, как правило, содержится мало золы, поэтому она является более экологичным топливом, чем нефть, уголь и даже природный газ, особенно когда при использовании энергетических плантаций исключается накопление С02 в атмосфере. Сравнительные характеристики различных видов топлива представлены в таблице 2.1, из которых видно, что каменный уголь, мазут, природный газ и торф выделяют большое количество углекислого газа и с экологической точки зрения менее предпочтительны по сравнению с древесным топливом и соломой. Как видно, соломенные пеллеты лишь незначительно уступают по качеству древесным, а по совокупности экологических показателей превосходят уголь, торф, дизтопливо и мазут.
Таблица 2.1. Сравнительные характеристики различных видов топлива
Вид топлива
Теплота сгорания, МДж/кг
% серы
%
золы
Дополнительное количество углекислого газа, кг/ГДж
Каменный уголь
15-35
1-3
1
60
Мазут
42
1,2
1,5
78
Щепа древесная
10
0
2
0
Гранулы древесные
17,5
0,1
1
0
Торф
10
0
20
70
Соломенные пеллеты
14,5
0,2
4
0
Природный газ
35-38 МДж/ м3
0
0
57
Основа биомассы – органические соединения углерода, которые в процессе соединения с кислородом при сгорании выделяют тепло. Особенность древесной биомассы как топлива состоит в том, что она в отличие от нефти, угля и природного газа имеет достаточно низкую теплотворную способность и высокую влажность. Присутствие влаги в топливе из биомассы часто ведет к значительным потерям выхода тепловой энергии, в связи с тем, что испарение воды требует значительных затрат энергии. В настоящее время биомасса преимущественно применяется в виде твердого топлива (дров, опилок, щепы, топливных гранул и пеллет), замещающего углеводородное сырье в котлах котельных и электростанций. Сравнительные энергетические характеристики различных видов биомассы представлены в таблице 2.2. Интенсивность горения топлива зависит от его химического состава, соотношения летучих газообразных компонентов и твердого углерода. В таблице 2.3 представлен химический состав соломы и древесной щепы. По составу и теплотворной способности древесина, солома и другие травянистые виды топлива (торф, костра и др.) в спрессованном и высушенном виде приблизительно одинаковы, у которых горючими составляющими, в основном, являются углерод и водород.
Таблица 2.2. Сравнительные энергетические характеристики различных видов биомассы
Вид биомассы
Влажность*, %
Теплота сгорания, кВтч/кг
Объемная
плотность*, кг/м3
Энергетическая
плотность, кВтч/м3
высшая**
низшая*
Древесные гранулы
10,0
5,5
4,6
600
2756
Древесная щепа твердых пород
50,0
5,5
2,2
450
1009
То же, просушенная***
30,0
5,5
3,4
320
1094
Древесная щепа мягких пород
50,0
5,5
2,2
350
785
То же, просушенная***
30,0
5,5
3,4
250
855
Трава***
18,0
5,1
3,8
200
750
Кора
50,0
5,6
2,3
320
727
Хлебные злаки***
15,0
5,2
4,0
175
703
Древесные опилки
50,0
5,5
2,2
240
538
Солома озимой пшеницы****
15,0
5,2
4,0
120
482
Примечание: * Расчет по массе влажного сырья. ** Расчет по массе сухого сырья*** В виде сильно спрессованных брикетов**** Сушка проводилась на воздухе в течение 9 мес.
Индивидуальные отличия тех или иных видов биотоплива заключается в различном процентном содержании влаги, в способе получения, продолжительности хранения, подверженности естественной или искусственной сушке.
Торф, как ископаемое, от остальных видов топлива (древесина, травянистые растения) существенно отличается повышенным содержанием сернистых веществ и высокой зольностью. Характеристики и качество древесины, используемой в качестве топлива, варьируются в широких пределах в зависимости от вида древесины и типа предварительной обработки. Например, влажность топлива, подаваемого в топку, может составлять от 25 до 55 весовых % (влажная основа) (кора, отходы лесопильного производства) или менее 10 весовых % (гранулированное топливо, брикеты, отходы обработки сухой древесины).
Топливные свойства древесины определяются рядом характеристик, таких как теплота сгорания, химический состав (например, содержание таких элементов, как хлор (Cl), углерод (С), водород (Н), азот (N), водород (Н) и сера (S), влажность, твердость, количество летучих веществ, количество твердого углерода, содержание и состав золы, характеристики плавления золы, характеристики ошлакования золы, количество загрязняющих веществ, пыли, спор грибов.
Таблица 2.3. Химический состав соломы и древесной щепы
Химический состав, весовой-% при влажности 20%
Солома
Древесная щепа
Зола
4,5
1,0
Летучие
75-81
81
Водород
Н
5,9
5,8
Углерод
С
47,5
50
Азот
N
0,3–1,5
0,3
Сера
S
0,15
0,05
Хлор
а
0,4
0,02
Кремний
Si
0,8
0
Алюминий
А1
0,005
0
Железо
Fe
0,01
0,015
Кальций
Са
0,4
0,2
Магний
Mg
0,07
0,04
Натрий
Na
0,05
0,015
Калий
К
1,0
0
Фосфор
Р
0,08
0,02
Влагосодержание, %
10 -25
50 – 60
Топливную древесную щепу часто производят из различных пород деревьев с различным соотношением стволовой древесины, коры, листвы, ветвей, почек и даже шишек, содержание которых изменяет свойства топлива.
Основными компонентами клеток древесины являются целлюлоза, гемицеллюлоза и лигнин, которые составляют 99 % массы древесного материала. Целлюлозу и гемицеллюлозу образуют длинные цепи углеводородов (таких как глюкоза), лигнин же является осложненным компонентом полимерных фенольных смол. Лигнин тесно связан с гемицеллюлозой, так как он действует как склеивающий агент, склеивая пучки цепей целлюлозы и растительные ткани. Таким образом, лигнин придает растению механическую прочность. Он богат углеродом и водородом, которые являются основными элементами производства теплоты. Поэтому лигнин обладает более высокой теплотворной способностью по сравнению с углеводородами. Древесина и кора также содержат так называемые экстрактивные вещества, такие как терпены, жиры и фенолы. Многие из них растворимы в органических растворителях (гексане, ацетоне, этаноле) и горячей воде. Древесина содержит относительно малое количество экстрактивных веществ по сравнению с количеством экстрактивных веществ, содержащихся в коре и листве. Приблизительно половина массы свежесрубленного дерева состоит из воды. Вторая половина представляет собой сухое древесное вещество, содержащее 85 % летучих веществ, 14,5 % твердого углерода и 0,5 % золы. В безводной древесине общее содержание углеродного компонента составляет приблизительно 50 %. При сжигании древесины составляющие ее компоненты превращаются в водяной пар (H2O), двуокись углерода (CO2), окислы азота (NOx), окись серы (SO2) и золу. Древесина практически не содержит серы, максимальное содержание серы в древесине составляет 0,05 %. Различные породы деревьев имеют различное содержание азота, которое составляет в среднем 0,75 %. Например щепа, полученная из так называемой азотфиксирующей древесины таких деревьев, как ольха, содержит более чем в два раза больше азота, чем щепа, полученная из древесины хвойных пород, таких как сосна и ель. Древесная кора также содержит больше азота, чем древесный материал. Теплотворные характеристики различных типов топлива зависят от соотношения содержащихся в них элементов. Углерод и водород увеличивают теплоту сгорания, в то время как высокое содержание кислорода в древесине ее уменьшают. По сравнению с другими видами топлива древесина имеет довольно низкое содержание углерода (около 50 % сухого веса) и высокое содержание кислорода (около 40 %), и, следовательно, довольно низкую теплоту сгорания на единицу сухого веса. Сухие древесина и кора также характеризуются очень низким уровнем зольности при сгорании, так, один плотный кубический метр древесного топлива дает только 3–5 кг чистой золы. Однако на практике зола часто содержит некоторое количество песка и продуктов неполного сгорания углерода. Горючие вещества, содержащиеся в твердом топливе можно разделить на две группы: летучие вещества и такие горючие компоненты, как твердый углерод. Обычно древесина имеет высокое содержание летучих веществ и низкое содержание твердого углерода. Восемьдесят процентов энергии древесина генерирует за счет сгорания летучих веществ или газов и двадцать процентов – в результате сгорания твердого углерода (раскаленные угли). Так как из-за большого количества летучих веществ, содержащихся в древесине, при ее горении образуются высокие языки пламени, для сгорания топлива требуется значительное пространство. Древесная кора и торф имеют аналогичные характеристики горения..
Перспективным источником древесного биосырья являются быстрорастущие насаждения, прежде всего, ива, тополь (одна тонна ивовой щепы (сырой массы) дает 8,9 ГДж, то есть примерно столько, сколько и одна тонна торфяных брикетов (для сравнения, 1 тонна мазута – 38,5 ГДж).
Для определения топливных свойств древесины используются два вида анализа
Технический анализ представляет собой определение с применением предписанных методов содержания влаги (ISO 331), содержания летучих веществ (ISO 562), зольности (ISO 1171) и содержания связанного углерода (ISO 609) в топливе.
Элементарный анализ представляет собой определение с применением предписанных методов элементарного состава топлива. Количество летучих веществ определяется с применением стандартных методов.
Теплотворная способность определяется высшей теплотой сгорания (высшая теплотворная способность (ВТС) или низшей теплотой сгорания (низшая теплотворная способность (НТС). Величина низшей или высшей теплоты сгорания может определяться на единицу сухого топлива (как правило, кг или м3) или на единицу топлива с учетом его влажности. Кроме влаги, содержащейся в топливе, влага также образуется при сгорании водорода. Уровень влажности определяет различие между высокой и низкой теплотой сгорания. При определении значения ВТС допускают, что влага конденсируется в воду, а при вычислении значения НТС предполагается, что влага находится в виде насыщенного пара. Теплотворная способность обычно выражается в МДж/кг. Значение ВТС топливной биомассы обычно составляет от 18 до 21 МДж/кг, что соответствует ВТС торфа, но значительно ниже, чем ВТС нефти.
Структурными элементами (по данным элементарного анализа) органической части древесины являются углерод (45–50 %), кислород (40–45 %), водород (4,5–6%) и азот (0,3–3.5 %). Содержание золы обычно составляет несколько процентов или доли процента (0,3 % в ели или березе без коры, 1,6 % в березовой коре и 3,4 % в еловой коре). Очевидным преимуществом древесной биомассы перед ископаемым топливом является низкое содержание в ней серы.